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Comment

Risks and benefits of immunosuppressant  
withdrawal in systemic lupus erythematosus

Catriona A. Wagner & Judith A. James

Withdrawing immunosuppressive treatment in 
systemic lupus erythematosus offers reduced 
toxicity and improved quality of life for patients 
in remission but carries a risk of disease 
reactivation. Emerging studies emphasize 
the importance of identifying patients who 
can safely discontinue therapy using clinical 
criteria and molecular profiling to guide 
personalized strategies.

Systemic lupus erythematosus (SLE) is a complex autoimmune dis-
ease characterized by heterogeneity in clinical presentation, disease 
course and response to therapy. Current SLE treatment approaches 
rely on glucocorticoids, immunosuppressants, targeted biologic thera-
peutics and antimalarials to achieve disease remission, prevent flares 
and mitigate long-term organ damage1. The treat-to-target strategy 
is a promising framework for guiding SLE management, emphasiz-
ing the attainment of validated endpoints, such as the Definition of 
Remission in SLE (DORIS) or Lupus Low Disease Activity State (LLDAS), 
which are associated with reduced flares, less organ damage accrual 
and improved health-related quality of life2. Although therapies have 
markedly improved outcomes for patients with SLE, prolonged use is 
associated with substantial adverse effects, including increased risks 
of infection, cancer, metabolic disorders, gastrointestinal upset and 
pregnancy complications. As a result, the 2024 EULAR recommen-
dations for SLE treatment emphasize the importance of tapering or 
withdrawing medications in patients with quiescent disease1; how-
ever, the optimal timing, strategies and patient selection for treatment 
withdrawal are not clear and require further investigation, especially 
for glucocorticoids and immunosuppressants. Thus, in the past  
5 years, numerous studies have focused on determining the feasibility 
and safety of immunosuppressant and glucocorticoid withdrawal in 
patients with stable SLE, with the aim of balancing the risks of continued 
treatment against the potential for disease reactivation (Box 1). This 
Comment examines studies of immunosuppressant withdrawal in SLE 
and explores potential strategies for identifying suitable candidates 
for withdrawal in the future.

Mycophenolate mofetil (MMF) is an immunosuppressant used to 
treat moderate-to-severe or organ-threatening SLE, including lupus 
nephritis; however, long-term MMF use is associated with increased 
infection risk, gastrointestinal issues, malignancies and teratogenicity. 
Thus, clinical trials have investigated the feasibility of MMF withdrawal 
in patients who have achieved disease quiescence. The randomized 
Weaning of Immunosuppression in Lupus (WIN-Lupus, NCT01284725) 
trial evaluated the non-inferiority of discontinuing maintenance immu-
nosuppressants in 96 patients with SLE and proliferative lupus nephritis 

who achieved renal remission after 2–3 years of treatment with azathio-
prine or MMF while continuing hydroxychloroquine3. Patients who dis-
continued immunosuppressive treatment experienced a higher rate of 
renal relapse (27% versus 13%) and severe renal or extrarenal SLE flares 
(32% versus 13%; defined as disease activity that required the initiation 
or reintroduction of immunosuppressive therapy) within 2 years than 
those who did not. In addition, the time to severe SLE flare was shorter in 
the discontinuation group than in the group that continued treatment.

A multi-centre, open-label, randomized clinical trial (ALE06, 
NCT01946880) investigated MMF withdrawal in 100 patients with stable, 
quiescent SLE (which was defined as a clinical SLE Disease Activity Index 
(SLEDAI) score of less than 4) who had been on MMF for at least 2 years, 
with an average duration of 6.6 years4. Within 60 weeks, 18% of those who 
discontinued MMF and 10% of those who maintained MMF experienced 
clinically significant disease reactivation, defined as any SELENA-SLEDAI 
flare with a sustained increase in immunosuppressive therapy. A 7% 
increase in the estimated risk of clinically significant disease reactiva-
tion was reported when comparing MMF withdrawal with maintenance, 
but this increase was not statistically significant. Although this risk was 
somewhat higher for patients with SLE with a history of lupus nephritis 
(n = 76), similar trends were also observed in this group of patients4.  
In both studies, similar rates of adverse events occurred in the main-
tenance and withdrawal groups; however, in the ALE06 trial, infection 
rates were lower in the withdrawal group than the maintenance group  
(46% versus 64%), with 6-fold fewer severe infections4.

A 2025 single-centre randomized non-inferiority trial by Gopal 
et al.5 directly compared the feasibility of immunosuppressant with-
drawal with that of glucocorticoid withdrawal in patients with SLE in 
remission for ≥1 year (defined as clinical SLEDAI score of 0, physician’s 
global assessment score of 0 and stable treatment with ≤7.5 mg per day 
glucocorticoids and immunosuppressants for ≥1 year) and ≥3 years of 
stable therapy. Over 52 weeks, flare rates were comparable between the 
immunosuppressant withdrawal group and the glucocorticoid with-
drawal group (20% versus 31%) with no risk difference. Non-inferiority 
was maintained at 2 years with a 32% flare rate in the immunosuppressant 
withdrawal group and 45% in the glucocorticoid withdrawal group. Thus, 
immunosuppressant withdrawal could be as feasible as glucocorticoid 
reduction when criteria for sustained remission are met.

Encouragingly, most patients (68–82%) maintained disease stabil-
ity after immunosuppressant withdrawal in the aforementioned clinical 
trials, underscoring the feasibility of safely withdrawing treatment in 
many individuals. The 2024 EULAR recommendations propose some 
clinical parameters for safe withdrawal, including at least 3–5 years 
of therapy, 2 years of DORIS remission and hydroxychloroquine 
maintenance1. Thus, the higher flare rate in the WIN-Lupus trial might 
reflect its inclusion criteria, which required 2–3 years of maintenance 
treatment (with an average of 2.8 years, compared with 6.6 years in 
ALE06 and 4.8 years in the trial by Gopal et al.)3–5. Notably, none of 
these trials used DORIS remission as an inclusion requirement, and post 
hoc analysis of the ALE06 trial revealed that patients who met DORIS 
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Findings demonstrate that immunosuppressant withdrawal can 
be safely performed in many patients with quiescent SLE, although 
a slight increase in flare risk exists. Despite this risk, the benefits of 
reduced treatment toxicity and improved quality of life could outweigh 
the risks for many patients. However, clinicians often hesitate to stop 
maintenance therapy owing to the lack of clear guidelines and the 
potential for disease reactivation.

Studies from the past 5 years demonstrate that most, but not all, 
patients maintain stable disease following immunosuppressant with-
drawal, which underscores the need to identify suitable candidates 
both clinically and molecularly before treatment cessation. Although 
clinical criteria, such as DORIS or LLDAS, are important, they might not 
fully capture the biological remission necessary for safe immunosup-
pressant withdrawal. Molecular profiling offers a promising comple-
ment to clinical assessments, enabling the identification of patients 
with residual immune activity who might benefit from prolonged 
maintenance therapy. Future research should focus on defining and 
validating multiple molecular biomarkers for safe immunosuppressant 
withdrawal, as well as exploring treatment-specific pathways of remis-
sion. These biomarkers will facilitate the development of personalized 
withdrawal strategies tailored to individual patient profiles, moving 
towards precision medicine in SLE management. By integrating clinical, 
serological and molecular data, clinicians can optimize treatment ces-
sation, balancing the risks of continued immunosuppression against 
the potential for disease reactivation. Ultimately, this approach will 
improve SLE outcomes by reducing treatment-related complications 
while maintaining disease control.
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criteria experienced fewer flares4, demonstrating the potential use of 
these criteria in stratification.

Despite these advances, even stringent clinical targets, such as 
DORIS remission, might inadequately capture flare risk. Data from a 
2023 cohort study show that the likelihood of flare in patients with-
drawing therapy during DORIS remission is 1.85 times higher than in 
patients in complete remission, as indicated by the absence of clinical 
findings and normalized serology6. Furthermore, emerging molecular 
data suggest that some patients meeting DORIS or LLDAS criteria might 
still exhibit subclinical immune activation. Specifically, transcriptom-
ics and clustering analysis that are based on differentially expressed 
pathways demonstrated the heterogeneity underlying remission and 
LLDAS in SLE. Most patients achieving DORIS remission or LLDAS were 
found in clusters characterized by reduced inflammatory activity7. 
However, some patients that met DORIS (7%) or LLDAS (17%) criteria 
were molecularly grouped into cluster 3, which was associated with an 
increase in the activation of inflammatory, Toll-like receptor and inter-
feron pathways. Thus, despite these patients meeting clinical targets, 
residual immune activation might persist and could predispose them 
to disease flares after treatment withdrawal.

Emerging work has identified molecular dysfunction that pre-
cedes clinical flares, even in patients with clinically stable disease. 
Longitudinal studies reveal distinct immune activation patterns up to 
12 weeks before symptom onset, including elevated pro-inflammatory 
mediators, interferon and inflammation transcriptional signatures and 
suppressed regulatory cytokines8,9. Activated immune cell subsets, 
including neutrophils, monocytes and naive B cells, are also elevated 
in patients with imminent flares8. A validated flare risk index that com-
bines 11 plasma mediators has a 97% sensitivity and 98% specificity for 
predicting flare10. These findings highlight the potential of multi-omic 
profiling to identify subclinical immune activation that could pre-
dispose patients to flares after immunosuppressant or glucocorti-
coid withdrawal; however, prospective withdrawal trials are essential 
for validating the clinical utility of these multi-omic profiles and for 
refining patient selection strategies.

Box 1 | Potential risks and benefits of 
immunosuppressant withdrawal in 
systemic lupus erythematosus
 

Benefits of stopping immunosuppressants
	• Reduced risk of infections, including severe infections
	• Avoidance of teratogenic effects in young women
	• Reduced cumulative toxicity
	• Avoidance of poorly tolerated adverse effects (such as nausea 
and fatigue)

	• Improved quality of life
	• Lower financial burden
	• Avoidance of unknown long-term effects

Risks of stopping immunosuppressants
	• Increased risk of flares in some patients (such as renal relapses 
and general systemic lupus erythematosus flares)

	• Increased risk of hospitalization owing to disease reactivation
	• Increased risk of organ damage from uncontrolled disease
	• Potential for early mortality
	• Possible need for initiation of other treatments with additional 
toxicities (such as glucocorticoids)

	• When returning to immunosuppressant therapy, the prior 
medication might no longer work or could require substantial 
doses of bridging glucocorticoids with enhanced toxicities
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Clinical trials

Nerandomilast slows progression  
of pulmonary fibrosis

Interstitial lung disease — either  
associated with connective- 
tissue diseases, autoimmune, 
or metabolic conditions, or 
of unknown cause as in idi-
opathic pulmonary fibrosis 
(IPF) — involves irreversible 
fibrotic damage of the lungs. 
The anti-fibrotic drugs nint-
edanib and pirfenidone slow 
disease progression but since 
their approval ten years ago, no 
therapeutic alternatives have 
become available for patients 
with progressive pulmonary 
fibrosis (PFF), including 
patients with IPF. The results 
of the phase III FIBRONEER-IPF 
and FIBRONEER-ILD clinical  
trials now highlight the 
potential of the anti-fibrotic 
and anti-inflammatory 
agent nerandomilast to slow 
progression of IPF and PFF.

Nerandomilast is an orally 
administered inhibitor of phos-
phodiesterase 4B. Participants 
in the 52-week trials received 
nerandomilast 9 mg or 18 mg 
twice daily or placebo. Randomi-
zation of patients (n = 1177 in the 
IPF study and n = 1176 in the PFF 
study) was stratified on the basis 
of whether they had previously 
received antifibrotic treatment 
with nintedanib or pirfenidone.

Forced vital capacity (FVC) as 
measured by spirometry pro-
gressively declines in patients 
with interstitial lung disease as 
a result of lung fibrosis. Both 
doses of nerandomilast were 
associated with smaller FVC 
decreases in patients with IPF or 
PFF from baseline to 52 weeks. 
Indicatively, the adjusted dif-
ference in FVC values between 
patients with IPF receiving 
18-mg nerandomilast twice 
daily and those who received 
placebo was 68.8 ml (95% CI, 
30.3 to 107.4; P < 0.001), whereas 

in patients with PFF, this metric 
was 67.2 ml (95% CI, 31.9 to 102.5; 
P < 0.001). Statistically signifi-
cant reduction in FVC decline 
was reported also in the sub-
groups of patients that had pre-
viously received nintedanib or 
pirfenidone. Diarrhoea was the 
most common adverse effect of 
treatment with nerandomilast, 
and serious adverse events were 
equally distributed across the 
three arms of each trial.

Nerandomilast did not 
improve patient-reported out-
comes in either trial. In patients  
with IPF, nerandomilast did not 
affect risk of first acute exacer-
bation, hospitalization for  
a respiratory cause or death; 
however, in patients with PFF, 
the hazard ratio for these events 
for the nerandomilast 18-mg 
group compared with the 
placebo group was 0.77 (95% CI, 
0.59 to 1.01; P = 0.06).

“Patients with pulmonary 
fibrosis associated with autoim-
mune diseases represented 
about 20% of the total study 
population and they did benefit 
from treatment,” notes Luca 
Richeldi, corresponding author 
of the FIBRONEER-IPF study, 
adding that “real world [data] 
will further inform clinicians 
on … management strategies.” 
Richeldi also highlights the 
need for “further studies [that] 
will hopefully provide data on 
patients with early, possibly 
preclinical, stages of disease 
and on specific subgroups, 
[such as] individuals with 
rheumatic disorders.”
Maria Papatriantafyllou 

Original articles: Richeldi, L. et al. 
Nerandomilast in patients with idiopathic 
pulmonary fibrosis. N. Engl. J. Med. 
392, 2193–2202 (2025); Maher, T. et al. 
Nerandomilast in patients with progressive 
pulmonary fibrosis. N. Engl. J. Med. 392, 
2203–2214 (2025)

Psoriatic arthritis

Tissue-resident memory  
CD8+ T cells on the skin–joint route

A skin–joint axis has been impli-
cated in psoriatic arthritis (PsA), 
which occurs in approximately 
30% of individuals with psoriasis.  
Previous studies have identified 
shared CD8+ T cell clones in skin 
and joint lesions of patients with 
PsA and have highlighted a role 
for IL-17 signalling in disease 
pathogenesis.

Single-cell RNA sequencing  
and spatial transcriptomic analy-
ses of skin and synovial biopsies  
from six patients with PsA now 
help to better understand some  
aspects of the skin–joint cross- 
talk in PsA. Tissue-resident 
memory CD8+ T cells (TRM cells) 
with an IL-17 signature (type-17 
TRM cells) were found to be 
enriched in both the skin and 
joints of patients with PsA. The 
total frequency of TRM cells was 
higher in skin than in synovial 
biopsies. Skin lesions were  
characterized by a strong 
IL-17-associated gene signature  
with both cytotoxic and non- 
cytotoxic type-17 TRM cell subsets,  
whereas granzyme K+ cytotoxic  
TRM cells were specifically 
enriched in the inflamed joints. 
TRM cells were found to interact 
with antigen-presenting cells 
in both the skin and joint, and 
ligand-receptor analysis sug-
gested that Langerhans cells and 
macrophages in the skin had the 
potential to recruit TRM cells and 

support differentiation into a 
type-17 phenotype.

Compared with the profiles 
of total CD8+ T cells, phenotypic 
variability was less pronounced 
within the 155 CD8+ T cell clones 
that were identified as being 
shared between the skin and 
joints in the six patients ana-
lysed. Shared CD8+ T cell clones 
expressed cytotoxic molecules 
irrespective of tissue location 
and those in the joint expressed 
markers associated with tissue 
homing and residency.

The antigen-driven or 
tissue-homing mechanisms 
through which shared TRM cell 
clones direct pathology across 
the skin and joints remain to be 
investigated. Although IL-17  
targeting works for the treatment  
of psoriasis, consistent with the 
strong type-17 phenotype of skin  
TRM cells reported here, it can 
be less effective at treating joint 
inflammation in PsA. Thus, on 
the basis of their findings, the 
authors propose that combina-
tion therapy targeting multiple 
pathways or TRM cell-specific 
targets might hold promise in 
refractory PsA.
Maria Papatriantafyllou 

Original article: Durham, L. E. et al. 
Clonal sharing of CD8+ T-cells links skin 
and joint inflammation in psoriatic arthritis. 
Arthritis Rheumatol. https://doi.org/10.1002/
art.43286 (2025)
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Rheumatoid arthritis

Synovial fibroblast-mediated  
neovascularization in RA

Neovascularization is regulated 
by angiogenic factors such as 
vascular endothelial growth 
factor (VEGF) and angiopoi-
etins (ANGPT1 and ANGPT2), 
which bind to TIE2. Interactions 
between rheumatoid arthritis 
synovial fibroblasts (RASFs) 
and endothelial cells promote 
pathogenic vascularization 
in the rheumatoid arthritis 
(RA) synovium. Understand-
ing how RASF–endothelial cell 
interactions alter vascularization 
in RA might reveal therapeutic 
targets.

Heck et al. provide insights 
into how RASFs alter neovascu-
larization in RA. The authors use 
the severe combined immuno-
deficient (SCID) mouse model of 
RA, which involves implanting 
healthy human cartilage and 
RASFs into SCID mice. In this 
model, RASFs induced patho-
genic helix-like vessel formation 
in both ipsilateral (site of RASF 
and cartilage implantation) and 
contralateral (distal cartilage 
implantation) sites. ANGPT2 
expression on endothelial cells 
in RA synovial tissue and in SCID 
mouse implants was increased 
compared with control samples 
(osteoarthritis synovial tissue 
and control implants, respec-
tively). In addition, culturing an 
endothelial cell line with RASFs 
upregulated ANGPT2 compared 
with untreated cells.

In a 2D model of tube forma-
tion (a technique used to study 
angiogenesis), adding RASFs to 
endothelial cells reduced the 
thickness of tubes compared 

with endothelial cells alone. 
In a 3D assay of endothelial cell 
sprouting, the addition of RASFs 
led to diffuse endothelial cell 
sprouting and subsequent 
disorganized tube formation. 
Furthermore, treating endothe-
lial cells with RASF-conditioned 
media similarly altered tube 
formation, which was exacer-
bated by the addition of IL-1β 
to the media.

Interestingly, repeated 
stimulation of RASFs with IL-1β 
led to lower IL-6 expression than 
a single IL-1β stimulation, and 
repeated RASF stimulation with 
IL-1β restored tube formation. 
RNA sequencing indicated that 
repeated RASF stimulation 
with IL-1β did not affect VEGF 
expression but upregulated 
RA-associated molecules, such 
as TNF signalling components, 
and downregulated IL-11 and 
CXCL2. The addition of CXCL2 
or IL-11 to the 2D tube formation 
assay showed reduced network 
area formation, which was 
restored by inhibiting either 
factor. Elena Neumann, the cor-
responding author of the article, 
comments that “there were 
other angiogenesis-associated 
factors and pathways in our 
RNA sequencing dataset 
that we plan to explore in 
the future.”

The authors then assessed 
how canstatin (an angiogenic 
inhibitor that is released when 
RASFs degrade the extracel-
lular matrix and that also blocks 
ANGPT1-induced proliferation 
of endothelial cells) might 

alter RASF–endothelial cell 
interactions. The level of 
canstatin was higher in serum 
from people with RA compared 
with healthy people and those 
with osteoarthritis. Long-term 
but not short-term treatment 
with canstatin in the 2D tube 
formation model reduced tube 
thickness. In the 3D model of 
endothelial cell sprouting, 
canstatin reduced the area of 
endothelial cell sprouting.

Adding canstatin to implants 
in the SCID model of RA led to 
a reduced number of helix-like 
vessels in ipsilateral implants 
but did not alter RASF invasive-
ness. ANGPT2 expression was 
also altered in a time-dependent 
manner in ipsilateral implants; 
ANGPT2 expression initially 
increased and then decreased 
to levels that were lower than 
those in control implants. 
The authors hypothesize that 
canstatin-mediated changes 
to ANGPT2, creates an imbal-
ance between ANGPT2 and 
ANGPT1 and therefore alters 
ANGPT1–TIE2 signalling and  
subsequent RASF–endothelial 
cell interactions.

Neumann notes that “these 
findings might also be relevant 
to other diseases in which vessel 
formation is altered, such as 
psoriatic arthritis or systemic 
sclerosis.”
Holly Webster 

Original article: Heck, C. et al. Influence 
of canstatin on fibroblast-driven 
hypervascularisation in rheumatoid arthritis. 
Ann. Rheum. Dis. https://doi.org/10.1016/ 
j.ard.2025.05.019 (2025)
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Rheumatoid arthritis

How JAK inhibitors tip the prothrombotic 
balance in rheumatoid arthritis
Vibeke Strand

The increased incidence of deep vein thromboses  
and pulmonary emboli has long been noted in 
rheumatoid arthritis and has been ascribed to 
the effects of chronic inflammation and disease 
activity, as well as to specific biologic DMARDs 
and JAK inhibitors. Reporting in ACR Open 
Rheumatology, Zavoriti and Miossec provide 
data that might explain the prothrombotic 
effects of the JAK inhibitor tofacitinib.

Refers to Zavoriti, A. & Miossec, P. Understanding cardiovascular 
events with JAK inhibitors: tofacitinib reduces synovial and vascular 
inflammation but not the prothrombotic effects of inflammatory 
cytokines on endothelium. ACR Open Rheumatol. https://doi.org/ 
10.1002/acr2.11790 (2025).

Patients with rheumatoid arthritis (RA) have a 50–100% greater risk of 
developing venous thromboembolisms (VTEs) than that of individu-
als without RA1. For example, a nationwide cohort study from Sweden 
reported a 1-year cumulative incidence of VTEs of 0.71% for patients 
with RA, compared with 0.36% for the general population2. This risk 
has been ascribed to the effects of chronic inflammation and disease 
activity, as well as to the use of specific biologic DMARDs and targeted 
synthetic DMARDS3,4.

The introduction of JAK inhibitors was received with enthusiasm, as 
they offered a convenient oral route of administration, but subsequent 
data have raised safety concerns. In the ORAL Surveillance clinical study, 
increased risks of major adverse cardiovascular events (MACEs) and malig-
nancies were reported with both doses of tofacitinib (10 mg twice daily  
and 5 mg twice daily), and this led to a boxed warning label5. Before con-
clusion of the trial, an excess of thromboembolic events was noted by the 
data and safety monitoring board in the group of patients who received 
the higher dose (10 mg twice daily), and this led to a mandated decrease 
to 5 mg twice daily6. An earlier Arthritis Advisory Committee meeting for 
the US Food and Drug Administration that reviewed approval of another 
JAK inhibitor, baricitinib, for use in patients with RA noted an increased 
incidence of thromboembolic events in phase 3 randomized controlled 
trials, and a boxed warning to this effect was subsequently included in that 
label6. Following release of the ORAL Surveillance results, the US Food and 
Drug Administration and the European Medicines Agency added black 
box warnings to the labels of all approved JAK inhibitors (with exception 
of ruxolitinib), for MACEs, malignancies and thromboembolic events.

The increased risk of VTEs in RA was confirmed in a 2020 review of 
the randomized controlled trials of tofacitinib for RA, psoriasis and pso-
riatic arthritis7. In a nationwide register-based, active comparator, new 

user design cohort study in Sweden from 2010 to 2021, patients with RA 
who were treated with tofacitinib were found to have an increased risk 
for pulmonary emboli compared with that of patients receiving tumor 
necrosis factor (TNF) inhibitors8. A recent systematic review of MACEs 
and all-cause deaths with JAK inhibitors or the interleukin-6 (IL-6) 
inhibitor tocilizumab (intervention arm) versus control interventions 
(TNF inhibitors or placebo) that included 18 randomized controlled 
trials with 21,432 patients with RA and a total of 57,040 patient-years 
exposure linked all JAK inhibitors, but not the IL-6R inhibitor, to a 
non-significantly increased risk of MACEs and all-cause deaths9.

Zavoriti and Miossec studied the specific effects of tofacitinib 
on synovial and endothelial cell function, vascular inflammation and 
coagulation10. In co-cultures of peripheral blood mononuclear cells 
with RA synoviocytes or endothelial cells, tofacitinib failed to reduce 
the prothrombotic effects of IL-17 and TNF on endothelial cells or 
tissue factor-initiated formation of thrombin, while it decreased the 
anticoagulant properties of thrombomodulin. Tofacitinib completely 
inhibited the expression of interferon-γ and decreased the production 
of TNF and IL-17A, as well as of the anti-inflammatory cytokine IL-10. 
Tofacitinib reduced endothelial cell activation, and stimulated the pro-
duction of IL-6 and coagulation factors, specifically of tissue factor and 
thrombomodulin. However, tofacitinib failed to reduce the expression 
of not only the prothrombotic tissue factor but also IL-8 and E-selectin. 
Higher doses of tofacitinib further decreased the production of TNF, 
IL-17, IL-6 and the pro-coagulant adhesion molecule VCAM-1 but did 
not affect the levels of tissue factor.

Together these data demonstrate that despite improving synovial 
and vascular inflammation, tofacitinib does not reverse the prothrom-
botic effects of IL-17A- and TNF-activated endothelial cells. However, on 
the basis of pre-clinical data, these findings provide a plausible expla-
nation for the increased cardiovascular risk observed with tofacitinib 
in RA. It is not known whether this effect is specific to tofacitinib or is 
shared by the JAK1–JAK3 inhibitors; this is an important topic for fur-
ther study. Similar experiments with baricitinib and upadacitinib would 
be useful. Surveillance, as generated by the labels, will continue, and 
these data should help in further monitoring the prothrombotic effects 
of the JAK1–JAK3 inhibitors, particularly as new selective members of 
the class, such as deucravacitinib and zasocitinib (TAK-279), are intro-
duced. Concurrent use of JAK1–JAK3 inhibitors and antithrombotic 
drugs is common and, in combination with TNF inhibitors, is expected 
to reduce the risk of thromboembolic events.
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News & views

Clinical guidelines

Region-specific, data-driven guidelines are 
needed for rheumatic diseases in LMICs
Amita Aggarwal

Separate guidelines are needed for the 
management and diagnosis of rheumatic 
diseases in low- and middle-income countries, 
especially with the advent of expensive 
biological therapies and monitoring 
techniques. The lack of robust data on the 
efficacy of low-cost drugs and biosimilars in 
these countries limits the development of 
data-driven guidelines.

Refers to Abu-Zaid M. H. et al. African guidelines for diagnosis and 
management of polyarticular juvenile idiopathic arthritis: PAFLAR 
initiative. Pediatr. Rheumatol. 23, 27 (2015).

Consensus guidelines serve as a reference for many physicians and can 
help to guide disease management. These guidelines often include 
expensive biological therapies and the use of biomarkers and radiologi-
cal techniques to assess responses to treatment that are not available 
in many low- and middle-income countries (LMICs). Thus, rheuma-
tologists from the Paediatric Society of the African League Against 
Rheumatism (PAFLAR) have developed guidelines for the diagnosis 
and management of polyarticular juvenile idiopathic arthritis ( JIA) 
with specific considerations for the challenges faced in Africa1.

Prior to a systematic literature search, 15 questions were formu-
lated using the PICO (population, intervention, control and outcomes) 
framework and a Delphi process was used to reach an agreement. The 
guidelines contain four overarching principles, five diagnosis recom-
mendations, and ten recommendations for disease management. 
The proposed recommendations for the diagnosis of polyarticular 
JIA addressed when to suspect disease, how to diagnose disease and 
which other diagnoses to consider. In addition, the recommendations 
also state that eye disease and the use of radiology should be consid-
ered. For disease management, the recommendations include setting 
treatment targets (such as remission or low disease activity), the use of 
methotrexate as a first-line agent along with NSAIDs and intraarticular 
steroids; second-line therapy, if required, should include escalating 
methotrexate dose and the addition of conventional synthetic DMARDs 
(including leflunomide or sulfasalazine) or biological DMARDs for 
those with a poor prognosis. Biologics are recommended as third-line 
agents along with tofacitinib. The use of biosimilars is suggested owing 
to their low cost1.

Although these PAFLAR guidelines are a welcome step towards 
region-specific guidelines and could prompt other LMICs to develop 
similar guidelines, there are some limitations. The first and foremost is 
the lack of robust data concerning the efficacy and toxicity of different 

treatments in the local setting. The registry data from the PAFLAR 
society show that treatments being used for polyarticular JIA in Africa 
include NSAIDs (31.1%), synthetic DMARDs (18.1%), synthetic DMARDs 
combined with NSAIDs (17.5%) and glucocorticoids (9.6%); only a 
small number of patients received biological DMARDs at diagnosis2. 
In the absence of robust data, the evidence base is the same as for the 
guidelines from the developed world and in most multinational trials, 
patients from African countries are rarely included.

Most guidelines from professional societies have given recommen-
dations for all major categories of JIA, whereas the PAFLAR guideline 
focus only on polyarticular JIA. Polyarticular JIA is defined as arthritis 
in children that involves five or more joints in the first 6 months. The 
recommendation is to refer all such patients to a paediatric rheuma-
tologist as delays in referral to a rheumatologist can lead to a poor 
long-term outcome3. However, is this recommendation feasible? Early 
referral could be possible in the developed world, where there are 
fewer children and more paediatric rheumatologists. In 2021, there 
were 650 million children in Africa and the number of trained rheu-
matologists is limited4,5. Thus, this recommendation, despite being 
logical, is hard to implement in Africa and other LMICs. One possibility 
is to train paediatricians in LMICs to recognize polyarticular JIA and 
start first-line therapy prior to a rheumatology consultation to avoid 
delaying treatment.

The guidelines also suggest the use of musculoskeletal ultrasound 
(MSUS) both for diagnosis and follow-up to assess treatment response, 
disease progression and to document radiological remission. Although 
MSUS is cheap and available on the bedside, this technique has sev-
eral issues, such as a steep learning curve for adequate expertise, 
interobserver variability, lack of equipment in rheumatology units 
and time needed for a detailed evaluation. For these reasons, MSUS 
is not included in the current guidelines for paediatric and adult joint 
diseases from developed regions such as those from the ACR or EULAR.

The guidelines include an important cautionary note against using 
specific diets and herbal supplements. In regions such as Africa and 
Asia, there is a general belief that certain kinds of food can aggravate 
arthritis, and herbal supplements and alternative systems of medicine 
are often used by patients to get relief. Inclusion of inflammatory 
ocular disease (such as uveitis) in the recommendations for diagno-
sis could have been avoided as this complication is rare in rheuma-
toid factor-positive polyarticular JIA and prevalence in rheumatoid 
factor-negative polyarticular JIA ranges from 1.8% to 21.1%6. In Africa 
and the Middle East, inflammatory ocular disease is observed in only 
4.1% of children6.

The suggestion of using intravenous methylprednisolone bolus for 
a maximum of 3 days in refractory polyarticular JIA has been adapted 
from Egyptian guidelines but does not have much scientific rationale. 
The use of glucocorticoids in children has considerable metabolic and 
infectious adverse effects, and this option should therefore be used 
rarely. In LMICs, the risk of tuberculosis is also increased with the use of 
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glucocorticoids7. Perhaps a single low-dose methylprednisolone bolus 
(3–5 mg kg−1) to control severe joint disease activity could be considered.

Use of leflunomide or sulfasalazine as second-line agents in chil-
dren that do not respond to methotrexate is a low-cost alternative to 
adding biologics, but the data that support this recommendation are 
limited. However, in clinical practice, a combination of methotrexate 
with leflunomide shows good response in polyarticular JIA8. Another 
cost-effective alternative is the use of subcutaneous methotrexate 
as this method increases bioavailability9; however, there are issues 
with feasibility and acceptability of subcutaneous methotrexate in 
LMICs, as nurses are not always available and parents are reluctant to 
personally administer the injection. Biosimilars have made access to 
biologics possible in LMICs, although it is still beyond the reach of the 
average person. In real life data, biosimilars have performed as well as 
their reference drugs, biosimilars of TNF therapies are widely available, 
but biosimilars of IL-6 inhibitors are not yet available in many LMICs10.

Thus, in the future, local data on efficacy, toxicity and the cost effec-
tiveness of low-cost therapies, such as the addition of leflunomide or 
sulfasalazine and the use of subcutaneous methotrexate, should be used 
to inform recommendations. Similarly, data on locally available biosimi-
lars are needed as different biosimilars can vary widely both in regard to 
efficacy and toxicity. Studies that use generic JAK kinase inhibitors that 
cost less than US$10 a month in children with JIA could be transformative 
for LMICs; however, further safety studies specifically in these regions 
are needed. Another possible option is the repurposing of drugs that 
have immunomodulatory properties. It is an opportune time for LMICs 
to come together and perform these studies so that children in these 
countries can be effectively treated with low-cost effective therapies.
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Synovial fluid as a complex molecular pool 
contributing to knee osteoarthritis

Hayley Peters    1,2,3, Jason S. Rockel1,3, Christopher B. Little    4,5,6 & Mohit Kapoor    1,2,3,7 

Abstract

The main homeostatic function of the synovial fluid is joint lubrication. 
However, during knee osteoarthritis (KOA), synovial fluid becomes 
modified with drivers of disease that contribute to symptoms (pain) and 
joint-related pathology. Acting as a sink of factors from both systemic 
circulation and local tissues, including articular cartilage, subchondral 
bone, synovium, and the infrapatellar fat pad, the synovial fluid enables 
bidirectional communication promoting KOA pathogenesis. Synovial 
fluid constituents might also be detected in circulation, functioning 
not only as accessible biomarkers but also as potential mediators of 
KOA-driven systemic effects. Factors deposited in synovial fluid have 
the ability to affect nervous system activity, acting at the neuronal 
projections that are integrated into joint tissues from dorsal root 
ganglia. Non-coding RNAs (microRNAs, long non-coding RNAs, 
circular RNAs), metabolites, cytokines and other secreted proteins 
of the synovial fluid in KOA have emerged as biomarkers of disease 
progression, therapeutic efficacy, and pain. These molecules might also 
function as molecular mediators of KOA, supporting them as candidates 
for therapeutic intervention. This review consolidates literature 
published primarily within the past 4 years, focussing on factors 
identified within synovial fluid as biomarkers and molecular mediators 
of KOA symptoms and pathology. Emerging therapeutic modalities to 
target synovial fluid molecular mediators are also discussed.
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fragments are released into the synovial fluid, as demonstrated by 
N-terminomics, a subtype of proteomic analysis that identified 677 
peptides originating from 153 proteins present in both KOA cartilage 
and synovial fluid14. Cartilage degradation fragments have the ability 
to promote inflammatory processes, including tissue vasculariza-
tion, fibrosis and immune cell recruitment, changing the cellularity 
of the knee joint15,16. Owing to increased vascularization, metabolic 
disturbances occur in the joint through modification of nutrients and 
oxygen content, shifting cellular metabolic process and downstream 
products17,18.

Additionally, soluble mediators of the synovial fluid stimulate 
distal nerve terminals to promote joint pain in KOA19,20. Increased nerve 
afferents infiltrating joint tissues create the potential for increased 
propagation of pain signals in KOA21. This is mediated, in part, by articu-
lar cartilage degeneration, which exposes sensory nerve endings infe-
rior to the cartilage (such as in the subchondral bone) to additional 
molecules in the synovial fluid, increasing joint pain22. Most tissues 
in the knee, other than cartilage, are innervated with afferents from 
nociceptive neurons that detect pain signals5. Nociceptor cell bodies 
are found in DRGs of the spinal cord, which project to the somatosen-
sory cortex of the brain, where painful nociceptive information is 
processed5,23,24 (Fig. 1). During KOA, molecules in synovial fluid interact 
with afferents from DRG neurons, innervating joint tissues23,24. For 
example, when cultured neurons from mouse DRGs that innervate the 
knee were stimulated with human synovial fluid from individuals with 
KOA, they showed neuronal hyperactivity, as measured through resting 
membrane potentials, membrane channel activity, and intracellular 
Ca2+ levels, as compared with cells stimulated with synovial fluid from 
healthy individuals20. This is indicative of changes to synovial fluid 
molecular mediators as part of KOA that can directly activate DRG 
neurons and contribute to pain.

In this Review, we discuss key biomarkers and molecular mediators 
of OA found in synovial fluid, including non-coding RNAs, metabo-
lites, cytokines, growth factors, and other secreted proteins, that 
have potential as diagnostic tools for the presence or progression 
of KOA. The article focuses on primary KOA, concentrating on litera-
ture primarily from the past 4 years as an update of previous reviews, 
including both preclinical and clinical research. We discuss functional 
contributions of molecules within synovial fluid, while also considering 
synovial fluid-derived mediators detected in the circulation. In light 
of identified synovial fluid molecular changes, potential therapeutic 
targets and novel drug-delivery strategies to mitigate KOA-destructive 
mechanisms within the synovial fluid and joint microenvironment are 
visited.

Biomarkers of knee osteoarthritis within  
synovial fluid
Currently, total knee arthroplasty (TKA) remains the only strategy 
to alleviate pain and improve quality of life of those with KOA once 
conservative management strategies have been exhausted. However, 
delaying TKA remains crucial to alleviating health care and patient 
burdens created through multiple lifetime surgeries due to prosthetic 
wear and eventual failure25. Early diagnosis can help to ensure that 
treatments are delivered before progression to advanced disease 
stages that require TKA. Using biomarkers within synovial fluid in 
the detection of the early stages of KOA, as well as monitoring KOA 
progression, is an attractive option as it is relatively inexpensive and 
is directed to the affected joint. Table 1 provides a synopsis of studies 
describing major biomarkers identified within synovial fluid over the 

Key points

	• Synovial fluid bathes the entire joint, and the various joint tissues 
such as articular cartilage, subchondral bone, synovium and the 
infrapatellar fat pad contribute to the pool of molecular mediators 
in the synovial fluid.

	• Molecules within synovial fluid, including non-coding RNAs, 
metabolites, cytokines, growth factors and other proteins, and cells 
have emerged as biomarkers of knee osteoarthritis (KOA).

	• Molecules within synovial fluid might also act as molecular mediators 
of KOA pathologies and pain.

	• Some synovial fluid-derived biomarkers and molecular mediators 
of KOA are also detected systemically, owing to direct transfer to and 
from the circulatory system, which might also be involved in painful 
nociceptive signalling through dorsal root ganglia neuron afferents.

	• Intra-articular injection of therapeutics targeting synovial fluid 
components might help to mitigate specific KOA pathologies, 
including cartilage degeneration and inflammation, although further 
innovation is required to identify therapeutics that increase retention 
time in the joint and alleviate joint-wide pathologies.

Introduction
Osteoarthritis (OA) is a debilitating disease that diminishes the quality 
of life of those afflicted. Over the past 30 years, the prevalence of OA 
has increased by 132.2%, with the knee being the joint most impacted1. 
Pathologies associated with knee OA (KOA) include articular carti-
lage degradation, inflammation and fibrosis of the synovium and the 
infrapatellar fat pad, subchondral bone remodelling, and osteophyte 
formation2,3. Joint tissues, including meniscus, ligaments, tendons, 
synovium, the infrapatellar fat pad, and subchondral bone, contain 
sensory innervation from neurons whose cell bodies are in the dorsal 
root ganglia (DRGs) of the spine, which contribute to KOA pain4,5. Pain 
is the primary driver of patients seeking medical treatment for KOA. 
Although approved therapies might provide temporary pain relief, 
there are no disease-modifying drugs currently available.

Within the knee, synovial fluid fills the joint space, bathing all 
tissues including the synovium, infrapatellar fat pad and articular 
cartilage (Fig. 1). Synovial fluid is an ultrafiltrate of plasma containing 
additional factors produced primarily by synoviocytes in the synovium, 
including lubricin, hyaluronic acid, surface-active phospholipids and 
glycosaminoglycans, among others6–8. It functions to lubricate the 
knee joint, reducing friction and allowing for smooth articulation9. In 
addition, synovial fluid reduces the rate of articular cartilage failure 
after cyclic compressive loading10. However, during KOA, synovial fluid 
composition is altered, increasing joint friction and enhancing cartilage 
degradation and pain9,11. Pre-existing molecules in synovial fluid are 
also modified, such as non-coding RNAs, metabolites, cytokines and 
chemokines, growth factors, and other secreted proteins, and might 
contribute to KOA pathogenesis12,13.

As a molecular sink, synovial fluid is capable of mediating 
bi-directional communication between local joint tissues and the 
nervous system, as well as with systemic tissues through the transfer of 
factors to and from the circulation. For instance, cartilage degradation 
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past 4 years, with some highlighted as also associated with other joint 
tissues or blood isolates.

Non-coding RNAs
Non-coding RNAs constitute a broad category of heterogeneous tran-
scripts that are not translated and act as epigenetic regulators of gene 
expression, including microRNAs (miRNAs), circular RNAs (circRNAs), 
and long non-coding RNAs (lncRNAs). miRNAs target specific sets of 
mRNAs for degradation, or inhibit their translation26. circRNAs func-
tion as miRNA ‘mops’ that modify the availability of target miRNAs to 
bind mRNA targets27. lncRNAs regulate protein-coding gene expres-
sion through modifying chromatin architecture, enhancer activity, 
mRNA stability, and gene silencing28. Importantly, secreted non-coding 
RNAs are often packaged into extracellular vesicles (EVs) and have been 
shown to participate in paracrine and endocrine cellular communi-
cation processes in multiple diseases such as cancer and metabolic 

syndrome, altering gene expression and potentially the functions of 
neighbouring cells29,30. The biogenesis of non-coding RNAs has been 
extensively studied and recounted in other reviews28,31–36. During KOA, 
non-coding RNA levels within synovial fluid have been shown to be 
altered, contributing to KOA pathogenesis by modifying many cellu-
lar processes, including cell proliferation, propagating joint-tissue 
damage12. Owing to their ability to alter gene expression, non-coding 
RNAs can serve as potential biomarkers of KOA pathogenesis, able 
to detect KOA, track disease progression and potentially predict 
therapeutic outcomes.

Detection of knee osteoarthritis. Non-coding RNAs, specifically 
miRNAs, as candidate biomarkers for the early detection of KOA have 
been a popular topic of research. For example, a donkey model with 
monosodium iodoacetate-induced KOA pathologies, including joint 
pain and cartilage degradation37, showed increased synovial fluid levels 

Synovial fluid interactions
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Fig. 1 | Local and systemic interactions of synovial fluid components during 
knee osteoarthritis. Within the knee joint, synovial fluid fills the joint space, 
bathing all tissues. Transfer of molecules detected in synovial fluid to and from 
joint tissues, including articular cartilage, subchondral bone, the infrapatellar 
fat pad and the synovium can act as biomarkers or molecular mediators of knee 
osteoarthritis (KOA). This may include microRNAs (miRNAs), long non-coding 
RNAs (lncRNAs), circular RNAs (circRNAs), metabolites and proteins (such as  

cytokines and growth factors). Molecules within synovial fluid may also be 
detected systemically in the circulation. Pain may be modified by actions of pain 
mediators in the circulation that can alter pain circuits, or locally in the knee by 
activating dorsal root ganglia sensory neurons of innervated joint tissues. Similar 
connectivity to the nervous and circulatory systems are also present within other 
synovial joints such as the hip, shoulder etc.
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Table 1 | Potential biomarkers of knee osteoarthritis in synovial fluid, blood or joints (as reported between 2021 and 2024)

Biomarker Associated fluid or tissue Biomarker activity Refs.

Non-coding RNAs

miR-146b and miR-27b Synovial fluid and serum KL-0/I graded KOA in humans 38

miR-335-3p and miR-335-5p Synovial fluid KL-0/I graded KOA in humans 39,40

miR-542 and miR-543 Synovial fluid Detection of KOA in canines 41

Profile of 809 EV miRNAs Synovial fluid Detection of post-traumatic OA in horses 44

Profile of 658 EV miRNAs Plasma Fibrosis and inflammation in post-traumatic OA in horses 44

Exosome content profile of 52 mRNAs,  
196 lncRNAs and 98 circRNAs

Synovial fluid Detection of KOA in humans 45

miR-27b-3p Synovial fluid and synovium Extracellular matrix dysregulation and synovial fibrosis  
in humans

47,48

miRNA-34a-5p Synovial fluid, plasma, 
articular cartilage

KOA in individuals with obesity 47,100

FER1L4 (lncRNA) Synovial fluid and plasma Detection of KOA in humans 49

miR-126-3p Synovial fluid and plasma KOA progression in humans and rats 101,102

Metabolites

Profile of 19 metabolites Synovial fluid Detection of metacarpophalangeal OA in horses 53

Profile of 28 metabolites Synovial fluid Distinguish KOA from RA in humans 54

Mannose, betaine, isoleucine Synovial fluid Distinguish KL-I versus KL-II graded KOA in canines 57

Lactate Synovial fluid Detection of late-stage KOA in canines 57

2-Hydroxyisobutyrate Synovial fluid Progression of KOA in canines 57

Lysophosphatidylcholine 16:0 Synovial fluid KOA-associated joint pain in mice 58

Proteins or peptides

Profile of 677 peptides Synovial fluid and articular 
cartilage

Cartilage degeneration in humans 14

COL10A1 Synovial fluid Detection of KOA in humans 38

IL-40 Synovial fluid Detection of joint Inflammation and cartilage degeneration in humans 65

COMP and PIICP Synovial fluid and serum Detection of KOA progression, disease severity, cartilage metabolism 
and joint pain in humans

77–79

RETN and CRP Serum Detection of KOA and joint inflammation in humans 71

IL-8 Synovial fluid Detection of joint inflammation and clinical severity in humans 72

TDO2 Synovial fluid Rating of KOA severity 73

IL-34 Synovial fluid and plasma Detection of KOA progression and synovitis in humans 74

sVCAM-1, MMP-3, sICAM-1, TIMP-1, VEGF  
and MCP-1

Synovial fluid Detection of inflammation and macrophage or neutrophil activation, 
and prediction of radiographic and clinical severity in humans

75

Profile of 786 EV proteins Synovial fluid Detection of KOA severity in humans 76

IL-1β, IL-10, IL-12 and GM-CSF Synovial fluid and serum Associated with decreased joint pain and stiffness, and improved joint 
function in individuals with KOA

83,85

IL-10, IL-1β, VEGF and IL-12–IL-23p40 Synovial fluid and plasma Associated with chronic joint pain post-total knee arthroplasty 83

ADIPOQ Synovial fluid Associated with clinical severity and joint pain in women with KOA and 
a normal BMI

86

PROK2 Synovial fluid Associated with knee joint pain in humans 87,88

NGF Synovial fluid and plasma Detection of KOA and associated with joint pain post-total knee 
arthroplasty

90

C2C-HUSA Synovial fluid and urine Predictor of joint pain post-total knee arthroplasty 92
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of miR-27b, miR-146b and collagen type X alpha chain (COL10A1) at 
early timepoints post-monosodium iodoacetate injection, with levels 
decreasing as the model progressed38, suggesting that these molecules 
might be useful biomarkers for early KOA detection. miR-335-5p and 
miR-335-3p were first found to be increased in the plasma of individu-
als with early radiographic KOA (Kellgren–Lawrence grade (KL) 0/I) 
compared with patients having late radiographic KOA (KL grade III/IV)39. 
Subsequently, miR-335-5p levels were increased in the synovial fluid 
of individuals with KL 0/I-graded KOA compared with late-stage KOA, 
whereas miR-335-3p showed no statistically significant variation40. 
These findings suggest that miR-335-5p might be a promising synovial 
fluid biomarker of early stages of KOA in humans.

Non-coding RNAs within synovial fluid could also be used as bio-
markers for detecting more advanced stages of KOA. One preclinical 
study investigating differentially expressed miRNAs in the synovial fluid 
of canines with spontaneous KOA determined that levels of miR-542 and 
miR-543 were significantly higher in synovial fluid of dogs with KOA 
compared with that of healthy dogs, indicating that these miRNAs are 
promising biomarkers of KOA in canines41. Recently, there has been 
a focus on the use of exosome and EV contents as indicators of KOA. 
Exosomes and EVs are secreted by almost all cell types into biofluids, 
potentially supporting intercellular communication42,43. In a preclinical 
study of horses with and without injury-induced post-traumatic OA, 
805 miRNAs were differentially expressed in synovial fluid EVs from 
horses with versus without post-traumatic OA44. These miRNAs were 
associated with a variety of pathogenic mechanisms including, but 
not limited to, fibrosis, angiogenesis and inflammation44. Additional 
preclinical studies using animal models of spontaneous KOA should 
be investigated to identify common elements of this miRNA profile 
consistent across species and KOA phenotypes, and to associate miRNA 
features with human primary or secondary KOA. Furthermore, analysis 

of the RNA content of synovial fluid exosomes from patients with KOA 
and non-OA knee injury controls, reported 52 mRNAs, 196 lncRNAs, and 
98 circRNAs as being differentially expressed between the two groups, 
with a subset of these RNAs having putative roles in the PI3K–Akt and 
autophagy pathways45. Thus, comparisons of non-coding RNA changes 
in humans and animal models of KOA can help understanding of puta-
tive biomarker consistency across species and KOA phenotypes. Such 
putative biomarkers might also represent disease-mediating factors, 
which can be investigated further as therapeutic targets for KOA.

Taken together, these studies demonstrate the utility of 
non-coding RNAs, specifically miRNAs, within synovial fluid as bio-
markers for KOA detection within early or later stages of the disease. 
Going forward, the focus should be shifted onto identifying profiles 
of biomarkers in synovial fluid that can reliably detect early stages of 
KOA in human cohorts. By identifying early biomarkers of KOA, thera-
peutics can be administered sooner, hopefully relieving pathological 
and clinical symptoms of the disease before they progress to more 
advanced stages where current therapeutics are only palliative until 
TKA becomes necessary.

Monitoring disease progression. Alterations in the expression of 
non-coding RNAs within synovial fluid might be indicative of disease 
progression in individuals with KOA. In a horse model of experimentally 
induced carpal OA that mimics human KOA, expression of miRNAs in 
synovial fluid changed as OA progressed46, demonstrating that miRNA 
signatures can correlate with disease stage. In humans, miR-27b-3p has 
been detected at higher levels in the synovial fluid47 and synovium48 of 
late-stage (KL III/IV) versus KL I/II-graded KOA, indicating that as KOA 
progresses, synovial fluid miR-27b-3p expression increases. A separate 
study of lncRNAs revealed that FER1L4 expression was downregulated 
in the synovial fluid and plasma of individuals with KL IV compared with 

Biomarker Associated fluid or tissue Biomarker activity Refs.

Proteins or peptides (continued)

Plasma EV protein complement Plasma Detection of carpal joint OA progression in horses 103

Profile of 199 EV proteins Synovial fluid and plasma Detection of joint inflammation in humans 104

Surface EV expression of FGA, FGB, FGG, TLN1 
and AMBP

Plasma Predictors of KOA progression 104

Profile of 82 proteins Plasma Correlating with poor joint function and PROMs 105

HABP2, HRG, ZPI AND PLF4 Synovial fluid and plasma Predictive of KOA progression in humans 106

Panel of 11 proteins Serum Predictive of KOA progression in humans 107

CRAC1 Synovial fluid and serum Predictive of KOA progression and pain in humans 108,110

Panel of 5 proteins Plasma Detection of bone marrow lesions in humans 109

T2CM Synovial fluid and serum Detection of KOA in canines (synovial fluid) and distinguishing 
late-stage versus KL-II graded KOA in humans (serum)

111,112

IL-6 Synovial fluid, articular 
cartilage and synovium

Detection of KOA in humans 128

ADIPOQ, adiponectin; AMBP, α-1-microglobulin/bikunin precursor protein; C2C-HUSA, type 2 collagen C terminal cleavage peptide assay; circRNA, circular RNA; COL10X1, alpha chain  
of type X collagen; COMP, cartilage oligomeric matrix protein; CRAC1, cartilage acidic protein 1; CRP, c-reactive protein; EV, extracellular vesicle; FER1L4, fer-1-like family member 4;  
FGA, fibrinogen alpha chain; FGB, fibrinogen beta chain; FGG, fibrinogen gamma chain; GM-CSF, granulocyte–macrophage colony-stimulating factor; HABP2, hyaluronan-binding protein 2; 
HRG, histidine-rich glycoprotein; KL, Kellgren–Lawrence; KOA, knee osteoarthritis; lncRNA, long non-coding RNA; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; 
NGF, nerve growth factor; OA, osteoarthritis; PLF4, platelet factor 4; PROMs, patient-reported outcome measures; PIICP, procollagen type II C-terminal propeptide; PROK2, prokineticin 2; 
RETN, resistin; RA, rheumatoid arthritis; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; T2CM, type II collagen neo-epitope;  
TDO2, tryptophan 2,3-dioxygenase; TIMP-1, tissue inhibitor of metalloproteinases-1; TLN1, talin-1; VEGF, vascular endothelial growth factor; ZPI, protein Z-dependent protease inhibitor.

Table 1 (continued) | Potential biomarkers of knee osteoarthritis in synovial fluid, blood or joints (as reported between 
2021 and 2024)
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KL III and healthy controls49, highlighting the potential of FER1L4 as a 
disease-staging diagnostic marker.

The above synovial fluid non-coding RNAs that are dysregulated 
and potentially alter KOA pathogenesis have emerged as biomarkers 
for the development and progression of KOA. Although steps have 
been taken to improve characterization of synovial fluid non-coding 
RNA profiles, additional validation and association studies in other 
biofluids, such as urine, are necessary to determine efficacy, while 
also considering the least invasive options for detection. Further 
analysis is also needed to determine relationships of non-coding RNA 
biomarkers to disease trajectories and therapeutic efficacy, to shift 
from a detection-of-presence to prognostic and predictive utility. 
Unfortunately, limited research within the past 4 years has focused 
on circRNAs within KOA synovial fluid, suggesting a crucial gap in the 
current literature that needs to be filled. Future studies should focus 
on circRNAs as putative biomarkers in KOA synovial fluid, which might 
contribute to disease symptoms and pathologies.

Metabolites
Metabolites are a broad category of small molecules generated through 
dietary ingestion and enzymatic reactions associated with cellular 
processes. Metabolite categories include carbohydrates, lipids, nucleo-
tides, amino acids, and organic acids, among others. Concentrations 
of metabolites are typically maintained in physiological ranges indica-
tive of homeostatic regulation of upstream metabolic process and 
downstream cellular functions50. During diseases such as KOA, levels 
of metabolites are modified, indicative of metabolic disturbances 
that influence downstream cellular mechanisms51,52. Thus, similar to 
non-coding RNAs, metabolite levels within synovial fluid emerge as 
useful biomarkers of KOA.

Detection of knee osteoarthritis. Recent studies have associated 
altered profiles of metabolites within synovial fluid with OA, including 
KOA, and shown their potential as biomarkers to detect the disease. 
In horses, 19 metabolites were differentially detected in synovial fluid 
of animals with metacarpo-phalangeal OA compared with controls: 
the levels of 1,3-dihydroxyacetone were increased in horses with OA, 
whereas the levels of tryptophan, phenylalanine, tyrosine, uridine, 
creatinine, creatine, glycine, choline, asparagine, glutamine, arginine, 
3-hydroxybutyrate, valine, 2-hydroxyisovalerate, α-ketoisovaleric 
acid, 3-methyl-2-oxovalerate, and methionine were increased in 
control horses53. In addition, differential metabolite signatures have 
been detected in human synovial fluid. For instance, 28 differentially 
secreted metabolites were found within the synovial fluid of individuals 
with KOA when compared with that from individuals with rheumatoid 
arthritis (RA)54, highlighting the potential of synovial fluid metabolite 
profiles to distinguish OA from RA. Furthermore, in synovial fluid of 
individuals with knee injuries, metabolite profiles correlated with 
injury type, sex, or both factors55, suggesting that clinical parameters 
and patient characteristics influence the role of synovial fluid during 
the pathogenesis of post-traumatic KOA and, potentially, of primary 
KOA. In addition, analysis of the infrapatellar fat pad by single-nucleus 
RNA sequencing and metabolomics identified obesity-specific dif-
ferences in transcriptomic and metabolite profiles in fibroblasts 
from individuals with KOA based on obesity status56. However, more 
comprehensive studies are necessary to identify the contribution of 
metabolites secreted by all joint tissues to KOA synovial fluid profiles 
and how cross-tissue signalling via synovial fluid metabolites promotes 
KOA joint pathologies.

Monitoring disease progression and pain. Progression of KOA has 
been associated with altered metabolite profiles within synovial fluid 
in animal models of KOA. For instance, metabolite profiles of canine 
synovial fluid have been found to change during the progression of 
KOA, whereby increased levels of mannose and betaine alongside 
decreased levels of isoleucine were detected in synovial fluid of KL 
I-graded KOA compared with KL II-graded KOA, and decreased levels 
of 2-hydroxyisobutyrate were identified in KL II/III compared with 
KL I-graded OA, whereas increased levels of lactate were detected in 
synovial fluid of KL III-graded KOA when compared with KL I/II-graded 
KOA57. As a next step, similar studies using human samples should be 
conducted to identify how metabolites change in synovial fluid over 
time during KOA.

Metabolite biomarkers in synovial fluid have also been associated 
with pain in KOA. For example, the metabolite lysophosphatidylcho-
line (LysoPC) in synovial fluid has been shown to contribute to acute 
cutaneous pain58. Specifically, increased LysoPC16:0 within human 
KOA synovial fluid was correlated with higher pain, whereas, in mouse 
models, LysoPC16:0 appeared to increase knee pain responses through 
the acid-sensing ion channel 3 (ASIC3) on DRG neurons58. These data 
highlight LysoPC16:0 as a metabolite biomarker with the potential to 
monitor the efficacy of therapeutics targeting pain as well as a target 
for modifying pain directly.

Although changes in synovial fluid metabolite levels during pri-
mary KOA appear to be useful as biomarkers of disease, several factors 
are likely to influence metabolite levels in synovial fluid, including sex, 
joint-tissue involvement and, in the case of post-traumatic OA, time 
post-injury. Thus, differences in synovial fluid metabolites in indi-
viduals with KOA are possibly impacted by patient demographics and 
clinical factors, such as sex, body mass index (BMI), and primary versus 
secondary KOA, and further studies should be completed to parse out 
profiles of metabolites that can distinguish similar patient subgroups 
considering patient characteristics55,59. By subgrouping heterogeneous 
individuals with KOA into endotypes by metabolite profiles, personal-
ized therapeutics can be generated for improved treatment of KOA. 
Additional studies should also investigate early changes in metabolites 
within KOA synovial fluid to improve early detection of disease, similar 
to studies conducted for disease staging, as discussed above. Synovial 
fluid metabolite ratios might also be useful as biomarkers of disease51,60, 
and should be considered in future studies.

Proteins
Within synovial fluid, proteins associated with progression and patho-
logical features of KOA have been widely studied, including cytokines, 
growth factors, and cartilage degradation products, among others. 
Dysregulation of synovial fluid proteins appear to be associated with 
KOA61. Conversely, growth factors might be important protective fac-
tors and are being investigated as potential treatments for repairing 
tissue damage62–64. Thus, detection of protein biomarkers in synovial 
fluid has the potential to assist diagnosis of disease, determine patho-
logical stage, follow the trajectory of disease progression, and predict 
therapeutic potential.

Detection of knee osteoarthritis. Protein biomarkers have long been 
used for the detection of KOA and associated pathologies. For instance, 
the levels of the cytokine IL-40 were found to be increased in the syno-
vial fluid of individuals with KOA compared with that from individuals 
without OA, and IL-40 was expressed in articular cartilage with KOA65. 
Cytokines detected within synovial fluid from individuals with KOA, RA, 
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or joint injury have also been found to exhibit differential expression 
profiles that can be used to discriminate joint pathologies, although 
common features are also shared66–68. Similar to cytokines, adipokines 
produced primarily by adipocytes69, as well as by other joint cells such 
as chondrocytes70, promote inflammation. Local adipokines have 
potential as biomarkers of KOA-associated inflammation — for example, 
high levels of the adipokine resistin (RETN) correlated with high levels 
of C-reactive protein (CRP) in synovial fluid in individuals with KOA71.

Monitoring disease progression and pain. Protein expression 
changes over time within the synovial fluid of individuals with KOA 
and might therefore be useful for monitoring disease progression. 
For instance, the levels of IL-8 in the synovial fluid of women with 
KOA-related joint effusion were significantly associated with clini-
cal severity, as well as with synovial fluid levels of tumour necrosis 
factor (TNF), IL-6, visfatin (NAMPT), and osteopontin (OPN) after 
corrections for confounding variables, but not resistin72. These cor-
relations were not reproduced with levels of IL-8 in the serum72, indi-
cating that the pro-inflammatory effects of IL-8 are likely localized to 
the joint. Furthermore, tryptophan 2,3-dioxygenase (TDO2), a pri-
mary enzyme associated with the production of the inflammatory 
mediator kynurenine, was detected in synovial fluid of individuals 
with KOA and correlated positively with KOA severity and with levels 
of pro-inflammatory cytokines in synovial fluid73. In addition, synovial 
fluid levels of IL-34 were associated with increasing disease sever-
ity and synovitis in individuals with KOA74. A set of six secreted pro-
teins in the synovial fluid — soluble vascular cell adhesion molecule-1 
(sVCAM-1), matrix metalloproteinase 3 (MMP-3), soluble intercel-
lular adhesion molecule-1 (sICAM-1), tissue inhibitor of metallopro-
teinase-1 (TIMP-1), vascular endothelial growth factor (VEGF), and 
monocyte chemoattractant protein-1 (MCP-1) — were also associated 

with synovial inflammation, radiographic severity, symptom severity, 
and secreted activation markers of synovial fluid macrophages or 
neutrophils75, suggesting that activated immune cells might medi-
ate synovial fluid changes contributing to KOA (Box 1). An additional 
study identified 786 EV peptides within synovial fluid that correlated 
with KOA severity76. Thus, pro-inflammatory molecules of the syno-
vial fluid, many of which are typically associated with inflammatory 
arthritis (such as RA), emerge as biomarkers of disease progression in 
individuals with KOA and might reflect disease-specific mechanisms.

Protein biomarkers within synovial fluid might also be used to 
monitor KOA symptoms such as pain. For instance, cartilage oligomeric 
matrix protein (COMP) and procollagen type II C-terminal propeptide 
(PIICP) have previously been detected within the synovial fluid from 
individuals with KOA, and the serum and synovial fluid levels of COMP 
and PIICP were associated with the development and progression of 
OA, respectively77,78. These molecules, as well as other serum proteins 
or peptides associated with cartilage metabolism, have also been 
associated with KOA severity and pain79. Thus, COMP and PIICP have 
emerged as potential local and systemic biomarkers of OA pathology 
and symptom progression.

Although cytokines are most commonly associated with inflam-
mation, they have also been linked to pain responses experienced by 
individuals with KOA. Receptors for specific cytokines are expressed on 
nociceptive nerve endings, and thus cytokines stimulate DRG neurons, 
altering pain responses80–82. IL-1β, IL-10, and IL-12 have previously been 
detected in synovial fluid from individuals with KOA83. Moreover, the 
levels of these cytokines, as well as that of granulocyte–macrophage 
colony-stimulating factor (GM-CSF) in the serum correlated with 
improvements in self-reported Western Ontario and McMaster Uni-
versities Arthritis Index (WOMAC)84 scores of pain, stiffness, and func-
tional disability85. Adipokines might also have a role in pain responses. 

Box 1 | Cellular components of synovial fluid in knee osteoarthritis
 

Immune cells and other inflammation-promoting cells in the 
synovial fluid

	• Macrophages, T cells and neutrophils are major immune cell 
populations identified within synovial fluid195.

	• Neutrophils and macrophages primarily contribute to the synovial 
fluid levels of transforming growth factor-β1 (TGFβ1) and elastase, 
respectively, and increases in the levels of both proteins have 
been associated with progression of knee osteoarthritis (KOA)195.

	• In early-stage KOA (as defined in Luyten et al.196), T helper 1 (TH1) 
CD4+ T cells are present in both the synovium and synovial fluid, 
where they promote a pro-inflammatory environment coincident 
with increased levels of IL-6 in synovial fluid197.

	• CD14+ monocytes found in synovial fluid have also been 
associated with synovial inflammation and the levels of soluble 
CD14, interleukin-6 (IL-6), complement component 3 (CC3), IL-1β 
and tumour necrosis factor (TNF) in synovial fluid198.

	• The distribution profiles of T cells, monocytes and macrophages, 
natural killer cells, and activated CD8+ T cells within synovial 
fluid were able to distinguish ‘activated’, ‘lymphoid progressive’, 
‘myeloid progressive’, and ‘aggressive’ phenotypes of KOA199.

	• Increased abundance of neutrophils in synovial fluid correlated 
with increased synovial fluid protein levels of TNF, IL-1RA, matrix 
metalloproteinase 9 (MMP-9), soluble triggering receptor 

expressed on myeloid cells 1 (sTREM-1), and visinin-like protein 1 
(VILIP-1), as well as with decreased surface expression of CD54, 
CD64, Toll-like receptor 2 (TLR2), and TLR4 on neutrophils200.

	• Increased synovial fluid monocyte-to-leukocyte ratio was indicative 
of poor response to intra-articular corticosteroid injections201.

	• Mesenchymal stromal cells originating from the synovium infiltrate 
synovial fluid during KOA, with potential anti-inflammatory and 
cartilage reparative effects202,203.

Injectable cellular therapeutics to attenuate knee osteoarthritis
	• Adipose- or bone marrow-derived stromal cells injected into 
joints of animals and humans with KOA can improve symptoms 
and joint function204–206, while modifying the proteome of 
synovial fluid-derived extracellular vesicles207 and reducing the 
inflammatory profile of synovial fluid208,209 (Fig. 2).

	• A phase I/II clinical trial showed that intra-articular injection 
of adipose-derived stromal cells was safe, reduced pain, and 
improved joint function210.

	• Combining a suicide gene transcriptionally linked to a cell division 
locus to prevent cell division211 with additional modifications masking 
transplanted cells from the immune system212 might help to provide 
long-term cell therapy without rejection or tumour growth (Fig. 2).
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For example, the levels of adiponectin (ADIPOQ) in synovial fluid have 
been associated with clinical severity, including pain, in women with 
KOA and a non-obese BMI86. Furthermore, prokineticin 2 (PROK2) was 
detected within the synovial fluid of individuals with KOA and has been 
associated with increased nociceptive sensitization87,88. Thus, cytokines 
and adipokines detected in synovial fluid might influence nociceptive 
stimulation, resulting in alterations to KOA pain.

Predicting surgical outcomes. TKA remains the final option for the 
treatment of advanced-stage KOA, although not all patients respond 
well. Up to 34% of patients undergoing TKA do not show improvements 
in pain89. Studies show that synovial fluid levels of nerve growth factor 
(NGF) are pre- or intra-operatively lower in individuals with KOA than 
in individuals with RA or systemic lupus erythematosus, but increase 
post-operatively in KOA in a positive correlation with postoperative 
pain, as measured by visual analogue scale scoring90. Furthermore, 
higher pre-operative synovial fluid concentrations of pro-inflammatory 
cytokines, such as TNF, are associated with less pain reduction 2 years 
post-TKA91. A phase II clinical trial that examined 345 individuals with 
painful KOA that was completed in 2023 (NCT04675034) demonstrated 
that subcutaneous injection of MEDI7352, an anti-NGF–TNF antibody, 
moderately improved pain, as measured by the WOMAC pain scale 
and the Numeric Rating Scale pain score. These findings suggest that 
binding of this antibody to NGF and TNF reduced pain; however, no 
definitive results have been published to date. Utilizing a therapeutic, 
such as MEDI73352, post-operatively might be useful for individuals 
with post-operative pain, but investigations on the bioavailability of 
MEDI73352 in synovial fluid are needed to determine if pain-alleviating 
effects are locally mediated. Local delivery of MEDI73352 into the 
synovial fluid might be a strategy worth investigating for further miti-
gation of pain. Increased post-surgery plasma levels of IL-1β, VEGF, and 
IL-12–IL-23p40, and decreased synovial fluid levels of IL-10 have also 
been associated with chronic pain post-TKA, as indicated by a numerical 
rating score of ≥4 at 6 months post-surgery83.

Cartilage breakdown fragments might also contribute to pain. The 
baseline synovial fluid-to-urinary ratio of type 2 collagen C terminal 
cleavage peptide assay (C2C-HUSA) correlated inversely with the likeli-
hood of reductions in pain 1 year after TKA92. Going forward, additional 
biomarkers associated with chronic pain after TKA should be vali-
dated preoperatively to determine usefulness as predictive biomark-
ers of surgical pain responses. This will aid in joint patient–clinician 
decision making for optimal treatment to improve KOA-related pain, 
including considering pre-surgical interventions to potentially modify 
post-surgical outcomes.

Current studies continue to point to proteins in the joint, par-
ticularly inflammatory mediators, as putative biomarkers of KOA. 
These proteins might also help to define mechanisms mediating dis-
ease in individual patients, leading to improved precision medicine 
approaches93,94. As with other molecular features, further studies 
should focus on identifying associations between proteins secreted 
locally in synovial fluid and their detection in other biofluids, such as 
blood and urine, for potential translation of biomarker studies using 
less invasive methods. Overall, studies suggest that non-coding RNAs, 
metabolites and secreted proteins, such as cytokines and growth fac-
tors, can be detected within synovial fluid, emerging as biomarkers for 
the detection of KOA, disease progression, and associated pathologies 
such as pain.

In addition to RNA, metabolite and protein biomarkers, micro-
bial components that are not local to the joint space but have been 

identified within synovial fluid have been implicated in the onset or 
progression of KOA. Intra-articular injection of lipopolysaccharide 
(LPS), an outer membrane component of Gram-negative bacteria that 
activates the innate immune system, is often used in animal models to 
induce joint inflammation and synovitis. LPS has been identified within 
both synovial fluid and serum of individuals with KOA, and LPS levels 
were positively associated with the presence of activated macrophages 
and increased total WOMAC score in these patients95. Bacterial nucleic 
acids have also been detected within the synovial fluid of individuals 
with KOA or RA96. Microbial profiles of the synovial fluid show altera-
tions based on KOA status as well as in individuals with KOA who did or 
did not require revision surgery because of non-infectious or infectious 
causes97. This finding indicated that the presence of a joint microbiome 
is independent of other organ systems and has the potential to influ-
ence KOA. Thus, the microbiome of the synovial fluid of the knee might 
interact with the microbiome in other locations and influence local joint 
tissues or KOA pathogenesis. Additional studies are required to further 
understand the influence of the joint microbiome on the presence and 
progression of KOA and whether antibacterial therapeutics have the 
potential to reduce KOA pathologies.

Future studies should focus on identifying biomarkers capable of 
detecting early stages of KOA, so that interventions can be applied to 
modify symptoms and slow disease progression. Additionally, com-
binations of biomarkers potentially consisting of non-coding RNAs, 
metabolites, secreted proteins, and microbiome-related factors should 
be consolidated and tested in a clinical setting to improve diagnostics 
available for the detection of KOA, associated pathologies, and thera-
peutic outcomes. Integration of biomarker types may improve detec-
tion of endotypes of KOA98, allowing for personalized therapeutics to 
be developed.

Circulating synovial fluid-derived molecules
The local joint synovial fluid has direct contact with the circulatory 
system; thus, locally derived molecules might also be detected in 
circulation (Fig. 1). Furthermore, during KOA, increased joint-tissue 
angiogenesis allows for greater exchange of mediators between syno-
vial fluid and circulation17. Circulating molecules that originate from 
the synovial fluid of the affected joint might provide both a source of 
disease biomarkers and a range of potential therapeutic targets.

Synovial fluid-derived biomarkers in circulation
Using circulating molecules as biomarkers for the detection of KOA 
is advantageous in diagnostics, prognostics, and precision medicine 
approaches, owing to less invasive sample accessibility and improved 
cost effectiveness. Circulating biomarkers have the potential to be 
used as proxies for joint pathological changes, in part because of the 
connections between joint structures, synovial fluid, and circulation. 
However, circulating biomarkers might originate from other joints not 
affected by KOA, or from other tissues in the body. Previous investiga-
tions have associated biomarkers, such as some non-coding RNAs and 
proteins, that are found in both circulation and synovial fluid with KOA 
pathologies99.

miR-34a-5p was initially shown to be increased within synovial 
fluid of individuals with late-stage (KL III/IV) KOA versus individuals 
with KL I/II-graded KOA47, but was later reported to also be increased 
in the plasma, cartilage, and synovium of individuals with late-stage 
KOA (KL III/IV) compared with individuals without KOA or who had KL 
0/I-graded OA100. In addition, miR-34a-5p was expressed at even higher 
levels in the plasma of individuals with late-stage KOA and obesity,  
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as determined by a high BMI, compared with individuals with late-stage 
KOA and a low BMI. miR-34a-5p levels were also found to be increased 
in the plasma, cartilage and synovium of mice fed a high-fat diet for 
18 weeks compared with those fed a lean diet100. Thus, miR-34a-5p levels 
within synovial fluid appear to be associated with KOA, whereas circu-
lating levels of miR-34a-5p are likely to be associated with both KOA 
and obesity. The levels of another miRNA, miR-126-3p, were found to 
be decreased in synovial fluid EVs from individuals with KOA compared 
with individuals who had no OA101, but were increased in the plasma of 
individuals with severe KOA compared with individuals with no OA101,102. 
Overall, plasma miRNAs might correlate with levels found in synovial 
fluid either positively or negatively yet still show potential as systemic 
biomarkers of KOA.

Exploration of circulatory EV contents has also helped to identify 
putative biomarkers of KOA progression and associated pathologies. 
For example, in a longitudinal model of equine OA, the first principal 
component of a collection of plasma EV proteins was associated with 
time after OA induction103, suggesting that plasma EV proteins might 
help to decipher OA progression. In another study comparing horses 
with or without post-traumatic OA, 658 miRNAs were differentially 
expressed within plasma EVs, with links to fibrosis and inflamma-
tion, among other mechanisms44. In a human clinical study, 199 EV 
peptides in synovial fluid and plasma were associated with inflam-
matory processes, whereas an increased frequency of plasma EVs 
expressing the surface markers fibrinogen alpha chain (FGA), fibrino-
gen beta chain (FGB), fibrinogen gamma chain (FGG), talin-1 (TLN1), 
and α-1-microglobulin/bikunin precursor (AMBP) was predictive of 
KOA progression104. Together, these studies suggest that analyses 
of EV cargo might provide useful circulatory biomarker signatures 
associated with KOA.

Similar to synovial fluid biomarkers, the aims of using circulatory 
proteins or peptides as biomarkers for KOA include both early diagnosis 
and personalized treatment. For instance, a profile of 82 differentially 
expressed proteins was identified in plasma from individuals with 
KOA compared with healthy individuals, with up to 25 of these pro-
teins also correlating with worse performance-based joint function 
or questionnaire scores quantifying pain, functional disability, and 
reduced quality of life105. However, the origin of these proteins was not 
explicitly investigated, and further studies should investigate whether 
these proteins can also be found within the synovial fluid. Several pan-
els of circulating proteins are predictive of overall radiographic KOA 
progression106–108, bone-marrow lesions109, or increased pain108, with 
some proteins of these panels also detected in synovial fluid, including 
hyaluronan-binding protein 2 (HABP2), histidine-rich glycoprotein 
(HRG), protein Z-related protease inhibitor (ZPI), platelet factor 4 
(PLF4)106, and cartilage acidic protein 1 (CRAC1)110. With respect to 
adipokines, a recent study identified higher resistin levels in the serum 
of individuals with KOA compared with individuals without KOA, and 
resistin levels correlated strongly with circulating levels of TNF71. Fur-
thermore, IL-34 in plasma was associated with synovitis and increasing 
KOA severity, consistent with findings on synovial fluid IL-34 levels74. 
As IL-34 levels in plasma and synovial fluid74 were found to correlate 
linearly, IL-34 plasma levels appear to be directly related to local joint 
expression and associated pathological processes. Overall, circulatory 
joint-tissue degradation products, adipokines, and cytokines seem 
to mirror protein alterations of the joint synovial fluid and could be 
used as proxies for what may be modified in the local KOA joint envi-
ronment to help diagnose KOA and predict KOA outcomes, as well as 
to understand KOA pathogenesis better.

Predictive biomarkers in circulation
Circulatory biomarkers used for the detection of KOA might also func-
tion as molecular mediators involved in altering KOA pathologies and 
might therefore be promising for evaluating therapeutic efficacy. 
Collagen degradation is a key marker of extracellular matrix (ECM) 
and cartilage deterioration associated with KOA, wherein an increase 
in collagen degradation products is indicative of cartilage degen-
eration. Type II collagen neo-epitope (T2CM) was found in synovial 
fluid of dogs with induced OA111, reflecting cartilage degeneration. 
The levels of T2CM were also found to be increased in the serum of 
individuals with late-stage KOA (KL IV), compared with individuals 
with KL II-graded KOA112, thus emerging as a circulating biomarker 
to track disease progression and potentially therapeutic efficacy.  
A phase II clinical trial with 549 participants investigated the effect of 
intra-articular injections of recombinant fibroblast growth factor-18 
(rFGF-18; also known as sprifermin) on type II collagen formation by 
measuring type 2 collagen propeptide (PRO-C2) in serum and synovial 
fluid, as increased levels of PRO-C2 are suggestive of increased collagen 
and therefore cartilage formation113. This study found that individuals 
receiving intra-articular injections of rFGF-18 had increased levels of 
PIIBNP in the synovial fluid and increased articular cartilage thickness, 
although this treatment was most effective for individuals who had a 
low baseline serum PRO-C2 level113. FGF-18 is of major interest moving 
forward as a means of disease modification, but as pain modifica-
tion remains the primary motivation for OA patients, investigating 
combination therapies of rFGF-18 with long-term pain-mitigating 
therapies will be crucial to potentially limit disease progression and 
pain simultaneously.

The adipokine neutrophil gelatinase–associated lipocalin 
(NGAL), a circulating protein used as a biomarker for inflamma-
tion, has been identified within the synovial fluid of individuals with 
KOA where it forms a complex with MMP-9, enhancing cartilage 
degeneration114. Although obesity, as defined by a BMI of >30 kg/m2, 
is a well-characterized risk factor for KOA incidence and progression115, 
caloric restriction has been shown to increase serum levels of NGAL116. 
By contrast, a phase IV clinical trial of 168 participants with obesity 
and KOA identified that administration of the glucagon-like peptide 1  
(GLP-1) receptor agonist liraglutide promoted weight loss in partici-
pants but did not significantly alter serum NGAL expression. This study 
suggests that GLP-1 receptor agonists might be beneficial for weight 
loss in individuals with obesity and KOA without posing a threat to 
worsening KOA pathologies, such as cartilage degeneration and inflam-
mation. Additionally, although this study suggests that GLP-1 receptor 
agonists might not modify NGAL systemically, future studies should 
also determine whether NGAL is reduced or unaffected in synovial fluid 
to determine potential local effects of GLP-1 therapy. Although GLP-1 
agonists have been reported to potentially modify pain and disease 
activity in KOA117–121, additional preclinical and clinical studies should 
be conducted to identify the potential relationships of GLP-1 receptor 
agonists and joint pathologies associated with KOA.

Overall, circulating non-coding transcripts and proteins derived 
from the synovial fluid are likely to reflect the pathological changes that 
occur within the osteoarthritic knee joint. Further validation studies 
should be conducted to determine if any of the discussed molecules 
in circulation can be used as biomarkers of KOA. Focusing on mol-
ecules with known positive correlations between plasma and synovial 
fluid levels and associations with disease pathologies or symptoms is 
of major interest as these molecules might be important predictors 
of therapeutic efficacy, act as targets for therapeutic intervention,  
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or help to stratify patients for precision-medicine approaches based 
on molecular pathophysiology, so-called ‘theratypes’122.

Synovial fluid molecular mediators of  
knee osteoarthritis
As synovial fluid bathes all tissues of the joint (Fig. 1), it not only pro-
motes cross-tissue communication but also carries molecular media-
tors that have the potential to promote KOA pathology. Profiling of 
proteins secreted from cartilage, synovium, the infrapatellar fat pad, 
and the meniscus into the synovial fluid has identified insulin-like 
growth factor 2 (IGF2), α-2-HS-glycoprotein (AHSG), fibronectin-1 
(FN1), complement factor B (CFB), kininogen (KNG), and complement 8 
(C8) as being increased in KOA123. The secretion of joint-tissue-specific 
ligands within synovial fluid is often induced by inflammatory stimula-
tion: for example, inflammatory signals induce the expression of FN1 
by synovial cells and tenascin C (TNC) by chondrocytes, and these in 
turn produce signals to modify the expression of the receptors for 
these ligands, namely syndecan-4 (SDC4) and integrin α5 (ITGA5), on 

chondrocytes and fibroblasts, respectively124. Below, we discuss the 
contribution of specific synovial fluid molecules to OA pathology, 
specifically cartilage degeneration and inflammation (Table 2).

Cartilage degeneration
Cartilage degeneration leads to permanent loss of chondrocytes and 
tissue architecture; thus, tissue regeneration in KOA is difficult to 
achieve125. Cartilage fragments and other molecular mediators released 
into synovial fluid contribute to synovial inflammation3, subchondral 
bone remodelling, and osteophyte formation126,127.

Multiple tissues secrete molecular mediators into synovial 
fluid that impact cartilage catabolism. For instance, in addition to 
their potential roles as biomarkers in synovial fluid and plasma, 
miRNA-34a-5p and miRNA-126-3p have cartilage-destructive 
and cartilage-protective effects, respectively100–102. The cytokine 
IL-6 is also found within synovial fluid, with synovial fluid IL-6 lev-
els being increased in individuals with KOA compared with healthy 
individuals128. IL-6 is secreted by distinct joint tissues, including 

Table 2 | Potential molecular mediators of knee osteoarthritis pathology in synovial fluid (reported between 2021 and 2024)

Molecular mediator Associated fluid/tissue Pathogenetic process Refs.

Non-coding RNAs

miRNA-34a-5p Synovial fluid, plasma, articular cartilage Cartilage degeneration 100

miR-126-3p Synovial fluid and plasma Cartilage protection from degeneration 101,102

let-7b-5p and let-7c-5p Synovial fluid Cartilage degeneration 145

miRNA-21 Synovial fluid and synovium Knee joint pain 173

miR-30b-5p Synovial fluid Cartilage degeneration, inflammation and joint pain 174

Proteins or peptides

IL-40 Synovial fluid Cartilage degeneration and inflammation 65

TDO2 Synovial fluid Inflammation 73

IGF2, AHSG, FN1, CFB, KNG 
and C8

Synovial fluid, cartilage, synovium and infrapatellar 
fat pad

Communication between joint tissues through 
synovial fluid

123

FN1, SDC4, ITGA5 Synovial fluid and synovium Communication between synovium and articular 
cartilage

124

TNC and NT5E Synovial fluid and articular cartilage Communication between synovium and articular 
cartilage through synovial fluid

124

IL-6 Synovial fluid, articular cartilage and synovium Cartilage degeneration, knee joint pain and 
inflammation

129–133

MMP-2 and RANKL Synovial fluid and articular cartilage Cartilage degeneration 137

SPARC Synovial fluid, plasma and subchondral bone Cartilage degeneration 140,141

APOE Synovial fluid, synovium and infrapatellar fat pad Cartilage degeneration 142

IL-1β Synovial fluid, infrapatellar fat pad Cartilage degeneration 143,144,172

TNF Synovial fluid Inflammation and cartilage degeneration 143,144,167,170

Profile of 121 upregulated 
proteins

Synovial fluid and secretomes of articular cartilage, 
infrapatellar fat pad, synovium and meniscus

Inflammation 161

MIF Synovial fluid and articular cartilage KOA pathogenesis and inflammation 162,163

CD74 Articular cartilage KOA pathogenesis and inflammation 162,163

IL-17A Synovial fluid and serum Joint pain, angiogenesis and inflammation 166,168–170

IL-17 Synovial fluid Inflammation 171

AHSG, α-2-HS-glycoprotein; APOE, apolipoprotein E; CFB, complement factor B; C8, complement 8; FN1, fibronectin-1; IGF2, insulin-like growth factor 2; ITGA5, integrin α5; KNG, kininogen 1; 
KOA, knee osteoarthritis; let-7, lethal-7 microRNA; MIF, macrophage migration inhibitory factor; MMP-2, matrix metalloproteinase 2; NT5E, 5’-nucleotidase ecto; RANKL, receptor activator of 
nuclear factor-κB ligand; SDC4, syndecan-4; SPARC, secreted protein acidic and rich in cysteine; TDO2, tryptophan 2,3-dioxygenase; TNC, tenascin C; TNF, tumour necrosis factor.
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articular cartilage, synovium and IL-6-secreting T cells within the infra-
patellar fat pad129,130, with studies showing associations with cartilage 
degeneration and pain131–133. IL-40, which, as mentioned previously, is 
also increased in KOA synovial fluid and within KOA cartilage, increases 
the secretion of IL-6, as well as IL-8, MMP-1, MMP-3, and MMP-13  
(ref. 65). Thus, joint-tissue-derived IL-6 or its upstream regulators 
emerge as potential synovial fluid targets for reducing cartilage degen-
eration in KOA. Biological inhibitors of IL-6, such as tocilizumab, have 
shown some promise in the treatment of autoimmune diseases134 
(Fig. 2). In vitro, a combination treatment of both tocilizumab and 
celecoxib, a cytochrome c oxidase subunit 2 (COX2) selective inhibi-
tor, on a hydrogen peroxide-induced human OA-like chondrocyte-cell 
model promoted anti-inflammatory effects, maintained chondro-
cyte viability and prevented the progression of cartilage damage135. 
A phase III study of 104 study participants with refractory hand OA 
tested the efficacy of systemic infusions of tocilizumab on pain control 
and joint function but reported little difference in pain relief between 
tocilizumab and placebo treatments136. Future studies should investi-
gate local delivery of IL-6-targeting biologics such as tocilizumab or 
siltuximab, or of IL-6 upstream regulators within synovial fluid, as a 
monotherapy or in combination with other potential therapeutics, to 
determine if this is more efficient in attenuating associated cartilage 
degeneration than systemic IL-6-targeting therapies.

Within the joint, subchondral bone provides structural and nutri-
tional support to the neighbouring articular cartilage22. In KOA, sub-
chondral bone contributes to cartilage degeneration through vascular 
invasion and, indirectly, through the secretion of molecules such as 
MMP-2 or receptor activator of nuclear factor-κB ligand (RANKL), into 
synovial fluid137. Interestingly, a preclinical trial in horses with intercar-
pal or intertarsal OA determined an association between intra-articular 
injections of an anti-TNF antibody and a reduction in MMP-2 activity or 
other pro-inflammatory molecules within synovial fluid that are also 
involved in cartilage catabolism, as well as reduced pain138. This study 
demonstrates the applicability of anti-inflammatory treatments to 
influence the effects of molecules secreted by subchondral bone on 
cartilage degeneration and pain. However, in clinical trials, although 
intra-articular injection of the anti-TNF antibody infliximab was found 
to be most associated with a reduction in KOA-related pain compared 
with other anti-TNF treatments and placebo, it conferred no signifi-
cant improvement in joint function and stiffness139, suggesting that in 
human KOA, anti-TNF therapeutics are not efficient at improving overall 
joint function. Further studies should investigate the development of 
multispecific antibodies that inhibit TNF alongside additional mol-
ecules that have a role in cartilage degeneration to potentially provide 
a more holistic KOA treatment. Cartilage degeneration in female rats 
with ovariectomy-induced menopause and KOA was promoted through 
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Fig. 2 | Intra-articular injection 
of therapeutics to mitigate knee 
osteoarthritis. Currently, intra-
articular injection of molecular 
mediators is the main focus of study 
for treatment for knee osteoarthritis 
(KOA) disease attenuation. The 
literature highlights the use of 
many therapeutic approaches 
to intra-articular delivery, such 
as nanoparticles, mesenchymal 
stromal cells, modified porphyrins, 
microRNAs (miRNAs), extracellular 
vesicles, hydrogels, biologics and 
protein traps to aid in relieving disease 
pathologies to improve overall joint 
function and experienced pain. 
ECM, extracellular matrix; LNA, 
locked nucleic acid; MHC-I, major 
histocompatibility complex I;  
TCR, T cell receptor. Fc and Fab  
denote antibody fragments.
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secreted protein acidic and rich in Cysteine (SPARC, also known as 
osteonectin), which was secreted by subchondral osteoblasts and 
downregulated AMPK–FOXO3a signalling in chondrocytes140. As SPARC 
has been identified in the synovial fluid from individuals with KOA141, 
it might be a promising candidate for targeting in combination with 
anti-TNF treatments. With the paucity of research on subchondral bone 
contributions to the molecular constituents of KOA-synovial fluid, addi-
tional studies will be vital to uncover how subchondral bone influences 
the repertoire of synovial fluid factors that contribute to KOA.

During KOA, both the synovium and the infrapatellar fat pad become 
inflamed and fibrotic, and secrete molecular mediators into synovial fluid 
that might contribute to cartilage degeneration or pain. Single-nucleus 
RNA sequencing of synovium and infrapatellar fat pad tissues from 
individuals with or without KOA demonstrated that apolipoprotein E 
(APOE) was expressed and secreted into KOA synovial fluid by fibroblasts 
and macrophages located in these structures142. Synovial fluid APOE 
derived from synovium and infrapatellar fat pad tissue was suggested 
to contribute to accelerated cartilage degeneration, thus emerging as 
another relevant target for reducing articular cartilage degradation. 
IL-1β and TNF are additional molecules that are secreted into the syno-
vial fluid from the infrapatellar fat pad, and their levels are increased in 
the synovial fluid from individuals with KOA compared with that from 
healthy individuals143. IL-1β and TNF secretion from KOA infrapatellar 
fat pad might promote cartilage degeneration by modifying p38 MAPK 
signalling144. EVs secreted specifically from KOA infrapatellar fat pad that 
contain miRNAs let-7b-5p and let-7c-5p were also identified in KOA syno-
vial fluid and found to contribute to cartilage degeneration145. Additional 
studies are needed focussing on cross-communication between the 
synovium, the infrapatellar fat pad and articular cartilage via the synovial 
fluid to further parse out how the synovium and the infrapatellar fat pad 
influence cartilage degeneration, potentially determining therapeutic 
targets originating from both tissues to reduce this pathology.

Currently, there are no effective therapeutic strategies to ‘cure’ 
KOA pathological features, and most treatments focus primarily on 
alleviating pain. However, intra-articular injections of therapeutics 
have recently been explored to attenuate disease pathology, providing 
a promising future for KOA treatments (Fig. 2). For example, aggre-
canases (ADAMTS) can be found within synovial fluid and have been 
previously shown to play a role in proteoglycan aggrecan degradation 
within articular cartilage146. Approaches to reduce the expression 
of ADAMTS include CYT-108, a recombinant protease inhibitor con-
structed from an α-2-macroglobulin (A2M) variant with affinity for 
ADAMTS proteins. Intra-articular injections of recombinant A2M in 
rats with anterior cruciate ligament transection-induced KOA showed 
greater attenuation of cartilage degeneration than wild type A2M147. 
As a result, intra-articular injections of CYT-108 are currently being 
investigated in a phase I clinical study (NCT06263270) to evaluate 
its preliminary efficacy in slowing the progression of KOA, inhibiting 
cartilage degeneration, reducing pain, and improving mobility.

Manipulating synovial fluid expression of miRNAs using 
intra-articular injection therapies might also be a promising therapeutic 
strategy to attenuate cartilage degeneration associated with KOA. Pre-
viously, it was found that KOA cartilage had reduced miR-1 expression, 
whereas overexpression of miR-1 in mouse joints was protective against 
cartilage degeneration148. Expanding upon these results, an inject-
able miR-1 agomir mimicking endogenous miR-1 reduced osteophyte 
formation and cartilage degeneration in rats with induced KOA149. Fur-
thermore, miRNA modification by locked nucleic acid (LNA)-modified 
antisense oligonucleotide (ASO) technology can enhance the stability 

of miRNA blockers, and, in the case of miR-181a-5p LNA-ASO, reduced 
cartilage degeneration and the expression of markers reflecting carti-
lage catabolism, inflammation, hypertrophy, apoptotic/cell death, and 
type II collagen breakdown in animal models of OA150,151. Intra-articular 
injection of miR-34a-5p LNA-ASO in mice with KOA protected cartilage 
from degradation. Previously, miR-140-5p was shown to alter ECM home-
ostasis and cell senescence, and attenuate KOA pathogenesis in animal 
models152,153. Subsequently, isolated EVs from human urine-derived 
stem cells overexpressing miR-140-5p that were intra-articularly injected 
into preclinical KOA models attenuated cartilage degeneration and 
subchondral bone remodelling154. In rats, intra-articular injection 
of exosomes from synovial fibroblasts overexpressing miR-126-3p 
also attenuated surgically induced KOA102. Together, these results indi-
cate that intra-articular injection of miRNAs or miRNA-overexpressing 
EVs are promising therapeutic modalities for attenuating KOA. Going 
forward, studies should apply the technologies discussed above to 
manipulate the expression of other miRNAs to alleviate other patho-
logical features of KOA, including fibrosis and inflammation in addition 
to cartilage degeneration. As there is a lack of clinical translatability in 
current preclinical studies targeting miRNAs to reduce cartilage degen-
eration, further studies should identify the applicability and efficacy of 
altering miRNA expression within human KOA synovial fluid to reduce 
cartilage degeneration through injection of either miRNA mimics and 
antagomirs, or encapsulated vesicles, such as EVs.

In summary, the above-discussed studies indicate that distinct tissues 
within the knee joint secrete molecular mediators into synovial fluid that 
affect cartilage degeneration. Further development of strategies to target 
molecular mediators within synovial fluid contributed by distinct joint 
tissues should be conducted to help to attenuate disease progression.

Inflammation
Chronic joint inflammation impacts multiple distinct joint tissues in 
KOA, both increasing joint swelling and stiffness and contributing to 
cartilage degradation and fibrosis155,156. Joint inflammation might also 
contribute to KOA pain, although there is some controversy surround-
ing this associaton157. The levels of pro-inflammatory cytokines within 
synovial fluid have been associated with clinical and radiographic sever-
ity of KOA158,159. Although the synovium has historically been considered 
the primary source of these cytokines3,160, inflammatory mediators are 
secreted into synovial fluid by many joint tissues. For example, IL-40, 
whose levels are increased in synovial fluid during KOA, as mentioned 
previously, promotes the expression of inflammatory molecules and 
degradative enzymes in chondrocytes65. Synovial fluid or cartilage, 
infrapatellar fat pad, synovium, and meniscus secretomes associated 
with KOA, as characterized by protein analysis in samples from individu-
als with KOA, were found to enhance pro-inflammatory signalling in a 
chondrocyte-like cell line161, indicating that cartilage, while responding 
to inflammatory signals, also contributes pro-inflammatory molecules to  
synovial fluid. Interestingly, a pro-inflammatory chondrocyte population 
defined by snRNA-seq and spatial sequencing was found to activate mac-
rophage migration inhibitory factor (MIF)–CD74 signalling in the joint158,. 
This finding is consistent with previously reported increases in levels of 
MIF in KOA-associated synovial fluid and chondrocytes, as well as with 
the protective effects of MIF deletion in KOA pathogenesis162,163. Thus, 
cartilage-derived pro-inflammatory mediators of the synovial fluid might, 
in part, contribute to positive feedback reinforcing joint pathologies.

Although many KOA joint tissues support inflammation, the syn-
ovium and the infrapatellar fat pad are considered hubs for the con-
tribution of inflammatory factors to synovial fluid3,164,165. For instance, 
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the synovium contributes to increased TDO2 levels in synovial fluid in 
KOA73. The pro-inflammatory cytokines IL-17A and TNF found in the 
synovial fluid contribute to inflammation and disease severity166,167, 
and seem to be derived, at least in part, from the synovium. Increased 
IL-17A levels in both the synovial fluid and serum in KOA were associ-
ated with structural damage, decreased quality of life and increased 
pain168, although the relative contributions of local and systemic  
IL-17A signalling to increased inflammation and pain in individuals with 
KOA remain to be fully elucidated. Notably, increased IL-17A has also 
been associated with increased expression of genes in chondrocytes 
and the synovium linked to angiogenesis, immune, and complement 
pathways169. IL-17A and TNF induce expression of E74-like ETS tran-
scription factor 3 (ELF3) in synovial fibroblasts, and the downstream 
upregulation of pro-inflammatory genes170. Genes associated with IL-17 
signalling were found to be among the most significantly upregulated 
genes related to inflammatory processes within a transcriptomic sig-
nature of the synovium in KOA171. The synovium might also contribute 
molecules with an anti-inflammatory activity, such as clusterin, which 
is detected in synovium, plasma, and synovial fluid of individuals with 
KOA, and decreases IL-1β-induced gene expression172.

Molecules present within synovial fluid that are associated with 
KOA inflammation, including miRNAs, might also modify pain intensity 
related to KOA. For example, miR-21, the most upregulated miRNA in the 
synovium and detected in synovial fluid in a mouse model of anterior 
cruciate ligament transection-induced KOA, seems to regulate pain 
intensity through interacting with Toll-like receptor 7 (TLR7), a key 
player in the innate immune system173. Injection of an miR-21 inhibitor 
in rats with OA was associated with reduced pain, whereas injecting 
naive rats with miR-21 was associated with increased joint pain173. In 
addition, miR-30b-5p expression was increased in KOA synovial fluid 
and associated with enhanced joint pain, while also promoting chon-
drocyte apoptosis and inflammation174. These data further demonstrate 
that miRNAs found within KOA synovial fluid might contribute to joint 
pain directly. Additional research should parse out the mechanism of 
action of specific miRNAs within synovial fluid that function to mod-
ify tissue-innervating DRG neurons, influencing the painful sensory 
information transmitted to the brain.

To attenuate inflammation associated with KOA, molecular 
mediators and cell types that promote disease pathology can be 
targeted (Fig. 2). One strategy to modify pathological constituents 
of the synovial fluid locally without unwanted systemic effects is to 
intra-articularly inject protein traps. As an example, ‘sticky traps’ func-
tion like traditional biologics, but limit molecular mediator function 
through both binding ligands and trapping them in the local ECM. This 
method has previously been shown to be effective in trapping VEGF 
to reduce aberrant angiogenesis within the eye175, a molecular pathol-
ogy also associated with KOA17. In the context of KOA, intra-articular 
delivery of mesenchymal stromal cells expressing an IL-1β sticky-trap 
into knee joints of mice with surgically induced KOA reduced carti-
lage degradation176. In addition, opsonized nanoparticles loaded with 
anti-inflammatory agents can ‘trap’ pro-inflammatory M1 macrophages 
to promote an M1 to M2 macrophage polarization, reducing inflamma-
tion and promoting cartilage repair177. Overall, therapeutic traps should 
be further explored to modify the activity of KOA mediators within 
synovial fluid for disease attenuation through validation in additional 
preclinical models for eventual translation to human clinical trials.

In summary, joint tissues contribute distinct molecular media-
tors to synovial fluid that promote KOA-associated inflammation. 
Additional studies should focus on molecular mediators secreted 

into synovial fluid that are associated with other pathological features 
such as tissue fibrosis and subchondral bone remodelling, as well as 
pro-inflammatory mediators of OA in synovial fluid of the shoulder, hip, 
and temporomandibular joints (Box 2). Further investigations should 
also focus on molecular mediators with shared expression across all 
joint tissues and in synovial fluid to support therapeutic strategies 
around a ‘whole-of-joint’ target.

Additional strategies targeting synovial fluid
Harnessing molecules with dual disease detection and therapeutic 
potential is an additional avenue for pursuit when developing ther-
apeutics (Fig. 2). For example, porphyrin molecules can be used to 
both track disease activity and deliver disease-modifying drugs. 
A porphyrin-based molecular sensor in which fluorescence is activated 
by MMP-13, the primary type II collagen catabolic protease upregu-
lated in KOA, was shown to track disease activity in vitro using cultures 
of MMP-13-expressing synoviocytes and in a mouse model of KOA178. 
Porphyrin-based molecules should be further explored for targeted 
or photodynamic therapy in KOA .

One challenge when delivering therapeutics intra-articularly is 
their rapid clearance rate from synovial fluid. For instance, the neu-
ropeptide substance P is associated with joint pain179, but has been 
shown to reduce chronic pain when injected into the spine; however, 
intrathecal catheter-administered substance P is cleared from the 
cerebrospinal fluid relatively quickly (within 4 h)180. Self-assembled 
peptide (SAP) hydrogels containing substance P were shown to have 
improved knee joint retention time (6 weeks)181. SAP substance P hydro-
gels have been tested in rabbits and guinea pigs, as well as in human 
synoviocyte–synovial fluid co-cultures, and have been reported to 
reduce cartilage degeneration and inflammation-related markers, 
respectively182. Nanoparticles might also help to increase retention time 
and modify synovial fluid constituents. Chondrocyte membrane-coated 
nanoparticles had a lower clearance rate than those without the mem-
brane using in vitro synovial fluid clearance simulation assays183. Addi-
tionally, drug-filled coated nanoparticles intra-articularly injected into 
rat and canine models of KOA attenuated periarticular bone remodel-
ling, protected against cartilage degeneration, and restored gait183. 
Thus, hydrogels and nanoparticles might be useful as therapeutic car-
riers to increase drug retention time and enhance long-term efficacy. 
Both therapeutic technologies should now be investigated in larger ani-
mal models to determine their efficacy in relieving pain, inflammation, 
and cartilage degeneration for further clinical translation.

Above, we have highlighted how some molecules and EVs released 
from joint tissues into synovial fluid are detected in the circulation. 
Although not within the focus of the current review, these joint-derived 
factors might act beyond being passive biomarkers of joint disease, 
and mediate organism-wide communication or modification of distant 
tissues by the OA joint. There has been increasing interest in cross-
talk between musculoskeletal tissues and other organs such as the 
brain and heart184,185. Large longitudinal human cohort studies have 
identified the prospective risk of OA and comorbid conditions such as 
cardiovascular disease, neurodegenerative diseases (Parkinson’s and 
dementia), and chronic kidney disease, among others, which suggests 
potential bi-directional interaction or shared mechanisms of disease186.  
A single-cell transcriptomic study demonstrated that distal bone 
marrow immune cells are substantially modified in individuals with 
OA, implicating a remote organ impact of OA187. Furthermore, a recent 
preclinical study demonstrated renal pathology in mice following 
DMM-induced KOA but not sham surgery, directly implicating OA in 
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causing distal organ disease188. Future studies should further explore the 
systemic impact of KOA and identify the joint-derived factors responsi-
ble that are also found within synovial fluid, which can thus act as both 
biomarkers of comorbid disease risk and potential therapeutic targets.

Future directions
Ongoing research into the synovial fluid of individuals with KOA has 
uncovered new biomarkers and molecular mediators of pathology, 
both within synovial fluid and in the circulation. However, there is a 
lack of research focussing on non-coding RNAs, including lncRNAs and 
circRNAs, that might contribute to KOA biomarker profiles. Expand-
ing our understanding of the roles of growth factors within synovial 
fluid will be important to fully establish the contributions of proteins 
within synovial fluid to KOA. Comprehensive investigations directed 
at uncovering the molecular mechanisms by which biomarkers and 
molecular mediators impact KOA pathogenesis must be completed to 
properly understand how these molecules contribute to KOA and, in 
turn, allow for more targeted therapeutics to be developed.

Omics analyses, such as next-generation sequencing, enable 
high-resolution analysis of tissues within the joint space, identifying 
specific cell types, subsets and transcriptomic profiles that influence 
KOA pathologies56,142,189–194. However, most sequencing studies focus 
on characterizing joint tissues rather than connecting specific cell 
populations to molecular mediators of the synovial fluid. Sequenc-
ing several joint tissues in parallel while evaluating components of 
patient-matched synovial fluid will be required to identify associations 
between tissue cells and synovial fluid constituents. Exploring both 
joint tissues and synovial fluid might provide an insight into potential 

therapeutic targets that might aid in attenuating disease pathologies 
across the entire knee joint, without focussing only on a single region 
or structure. This approach might also reveal additional systemically 
detected molecules associated with KOA that better represent local joint 
pathological changes. The benefits of high-resolution omics technolo-
gies and bioinformatics must be taken advantage of to identify specific 
molecular mediators and associated pathways that can be therapeuti-
cally targeted in synovial fluid to attenuate KOA. In addition, the field is 
also expected to benefit from the development of methods that improve 
retention of the therapeutics delivered while also providing delivery of 
therapeutics that may include cells, biologics and complex molecules.

We recommend that studies investigating therapeutic strategies 
for KOA view joint disease holistically and consider diverse pathological 
features including pain, synovitis, cartilage degeneration, subchondral 
bone sclerosis, and inflammation, among others. As synovial fluid 
bathes all joint tissues, a specific focus should be placed on identifying 
therapeutic methods targeting synovial fluid molecules that interact 
with a variety of tissues to relieve multiple KOA pathologies.

Conclusions
The rapid expansion of studies focused on knee joint synovial fluid has 
provided profiles of molecules that can be harnessed as biomarkers for 
KOA disease and potential therapeutic targets to attenuate KOA symp-
toms and pathologies. Although these discoveries are promising, further 
innovation is necessary to effectively modify the synovial fluid landscape 
by creating therapeutic modalities that alleviate KOA pathogenesis.

Published online: 7 July 2025

Box 2 | Synovial fluid beyond knee osteoarthritis
 

Hip osteoarthritis
	• The hip can be impacted by osteoarthritis (OA), and several 
molecules in the hip synovial fluid are potential biomarkers and 
molecular mediators of OA pathology.

	• Increased concentrations of the chemokine C-X-C motif 
chemokine ligand 8 (CXCL8), matrix metalloproteinase 9 (MMP-9), 
and vascular endothelial growth factor (VEGF) in synovial fluid 
of individuals with hip OA were indicative of hypertrophic bone 
morphology associated with hip OA, indicating a potential 
contribution to osteophyte formation213.

	• The metabolite profile of hip OA synovial fluid was altered based 
on body mass index (BMI), and levels of 1,3-dimethylurate, 
N-nitrosodimethylamine, succinate, tyrosine, pyruvate, glucose, 
glycine, and lactate were increased in the hip synovial fluid of 
individuals with hip OA and obesity compared with individuals 
with hip OA and a normal BMI214.

Hand osteoarthritis
	• Owing to the low volume of synovial fluid within hand synovial joints, 
most biomarkers used in the detection of hand OA are systemic.

	• Longitudinally, higher concentrations of serum hyaluronic acid 
were associated with an increased incidence of hand OA and with 
multiple joint involvement215.

	• The levels of circulating interleukin-7 (IL-7) correlate with the severity 
of hand OA216. IL-7 has also been associated with the incidence of 
erosive hand OA217.

Shoulder osteoarthritis
	• Individuals with shoulder OA have altered fatty acid profiles in 
the shoulder synovial fluid, with increased proportions of 18:1n-7 
compared with non-OA trauma synovial fluid218.

	• In a rat model of OA, IL-21 levels were increased in the shoulder 
synovial fluid compared with synovial fluid from healthy rats, and 
correlated with decreased levels of miR-361-5p in synovial fluid 
and shoulder OA pathogenesis219.

Temporomandibular joint osteoarthritis
	• The damage-associated molecular pattern molecule high 
mobility group (HMGB1) is increased in temporomandibular 
joint (TMJ) OA synovial fluid compared with synovial fluid from 
individuals with TMJ internal derangement, disc displacement 
without reduction, or disc displacement with reduction. Toll-like 
receptor 4 (TLR4), IL-1β, IL-18, prostaglandin E2 (PGE2), inducible 
nitric oxide synthase (iNOS), MMP-1, MMP-8, MMP-13, IL-6, and 
IL-23 are also increased in the synovial fluid of individuals with 
TMJ OA220,221.

	• Increased levels of tumour necrosis factor (TNF) and an increased 
ratio of receptor activator of nuclear factor-κB ligand (RANKL) to 
its receptor OPG in synovial fluid from individuals with TMJ-OA 
were associated with increased TMJ pain and subchondral bone 
degeneration221.
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Abstract

Chondrocyte biology is being revolutionized by single-cell multi-omics 
technologies, revealing cellular heterogeneity within cartilaginous 
tissues. Although past research has implicated cellular heterogeneity  
in chondrocyte populations, advances over the past decade in single- 
cell transcriptomics now enable a more granular, functionally 
annotated classification of chondrocyte subtypes. These analyses 
provide crucial insights into the role of these subtypes in cartilage 
formation, maintenance and disease progression. Chondrocyte 
populations are implicated in tissue homeostasis, pathogenesis and 
responses to external stimuli, including pro-inflammatory mediators 
and novel therapeutic agents. This knowledge opens pathways for 
developing targeted treatments for diseases such as osteoarthritis 
and intervertebral disc disease. Insights into the molecular signatures 
of disease-critical chondrocyte populations provide a foundation for 
biomarker discovery and therapeutic targeting, and there are exciting 
opportunities for leveraging these findings to progress regenerative 
therapies. Spatial and temporal profiling of cellular markers, behaviour 
and metabolic activity will enhance understanding of disease 
pathogenesis and chondrosenescence and could possibly enable 
early intervention for osteoarthritis, thereby preventing irreversible 
joint damage. Future research must integrate advanced single-cell 
techniques with computational modelling to unravel the dynamic 
interplay of chondrocyte populations. These efforts could transform 
precision medicine in rheumatology, addressing the unmet clinical 
needs in cartilage-related diseases.
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populations that are associated with both healthy and diseased tissue, 
providing insights into their specific roles in cartilage formation and 
maintenance14. Defining the cell populations present in different types 
of cartilage, which we summarize in this Review article, is indispen-
sable for future cartilage tissue engineering strategies, and provides 
important insights related to pathogenesis. Such insights are critical for 
identifying potential biomarkers and therapeutic targets for OA, IVDD 
and other cartilage-related disorders15. Moreover, integrating spatial 
transcriptomics and subcellular proteomics could provide a more 
comprehensive view of chondrocyte behaviour within their native 
microenvironment. Mapping the spatial distribution of chondrocyte 
subtypes and their associated signalling pathways in developing (Box 1 
and Fig. 1) and mature cartilage will improve understanding of how 
these cells contribute to cartilage homeostasis and the progression of 
degenerative diseases and could also facilitate development of targeted 
therapies for these conditions.

In this Review we provide a comprehensive update on chondrocyte 
populations in cartilaginous tissues at the single-cell level in health, 
disease and senescence, and highlight the applications for these tech-
nologies for deciphering the phenotypic cues that could be developed 
into sensitive, specific biomarkers and therapeutic targets for cartilage 
disorders in synovial joints or in the IVD.

Cell phenotype and phenotypic markers at the 
single-cell level
Understanding the diversity of cell phenotypes in joint and spinal tis-
sues is crucial for interpreting their roles in development, homeostasis 
and disease. Notably, in addition to chondrocytes, synoviocytes and 
synovial fibroblasts have emerged as central regulators of synovitis in 
OA, interacting dynamically with chondrocytes to propagate inflamma-
tory mediators and cartilage-degrading pathways under mechanical 
or metabolic stress16. This crosstalk exacerbates disease progression, 
positioning synoviocytes and synovial fibroblasts as important ther-
apeutic targets alongside chondrocytes. Over the past decade, the 
integration of high-resolution techniques such as scRNA-seq, spatial 
transcriptomics and proteomics has enabled unprecedented insight 
into cell populations across cartilaginous tissues. This section explores 
how these tools have revealed tissue-specific heterogeneity and phe-
notypic markers in hyaline cartilage, the meniscus and the IVD, with 
emphasis on both healthy and pathological contexts.

Cellular complexity in hyaline cartilage
The morphology of chondrocytes within hyaline cartilage varies 
depending on their function and location within the tissue. In articu-
lar cartilage, the characteristic roundish cell morphology is predomi-
nantly observed in the chondrocytes of the middle layer, where cells 
are sparse. These cells are embedded in an ECM that is rich in proteo-
glycans and collagen type II, which aids in the absorption and distri-
bution of mechanical compressions applied to the joint. By contrast, 
chondrocytes in the deep zone exhibit an enlarged pre-hypertrophic or 
hypertrophic appearance and are often arranged in columns oriented 
perpendicular to the surface. In the superficial layer, which faces the 
synovial fluid of the joint space and shields the deeper layers from 
shear stress, chondrocytes are abundant, have a flattened morphol-
ogy and are tangentially oriented relative to the cartilage surface, as 
demonstrated by 3D synchrotron imaging of the intact tissue11,17 (Fig. 2).

In contrast to other cell types, such as mesenchymal stem cells 
(MSCs), which are recognized by the presence or absence of a defined 
set of surface markers18, there is no widely acknowledged set of surface 

Key points

	• Musculoskeletal disorders, particularly osteoarthritis and 
intervertebral disc disease, remain therapeutic challenges owing to a 
focus on symptom management rather than mechanistic targeting.

	• Single-cell RNA sequencing analysis has identified distinct 
chondrocyte subpopulations in healthy and diseased tissues, 
overturning the paradigm of chondrocyte homogeneity.

	• Cellular diversity mapping through single-cell transcriptomics 
enables molecular stratification of cartilage degeneration, which forms 
the basis for disease-modifying therapies.

	• Integrating spatial transcriptomics and subcellular proteomics will 
reveal microenvironment-specific chondrocyte behaviours that are 
critical for the maintenance of tissue homeostasis, which could better 
explain how chondrocyte subtypes contribute to tissue homeostasis.

	• Machine learning-driven analysis of multi-omics data accelerates 
the discovery of network-level therapeutic targets for personalized 
treatment strategies.

Introduction
The increasing prevalence of musculoskeletal disorders, particularly 
osteoarthritis (OA) and intervertebral disc (IVD) degeneration (IVDD), 
represents a considerable public health challenge globally1. These 
conditions not only lead to chronic pain and disability but also impose 
a substantial economic burden on healthcare systems2. Current treat-
ment options focus on symptomatic relief rather than addressing the 
underlying pathophysiological mechanisms. As the population ages, 
the incidence of these musculoskeletal disorders is expected to rise, 
necessitating a deeper understanding of their underlying mechanisms 
to develop effective therapeutic strategies3.

Chondrocytes, the most abundant and functionally important cell 
type in cartilage, are essential for skeletal development and muscu-
loskeletal function4–6. Chondrocyte phenotypes in developmental 
cartilage disorders (such as chondrodysplasia) and cartilage following 
traumatic joint injuries have been reviewed elsewhere7,8; however, 
their specific roles in developmental cartilage disorders remain poorly 
understood. This Review focuses on how single-cell technologies 
are unravelling chondrocyte heterogeneity in prevalent degenera-
tive disorders such as OA and IVDD, with implications for biomarker 
discovery and targeted therapies. Chondrocyte phenotype is deter-
mined and maintained by the local physio-chemical microenviron-
ment provided by the cartilage-specific extracellular matrix (ECM)9. 
Previous conceptions of cartilage structure portrayed chondrocytes 
as nearly uniformly distributed within the ECM, with limited appre-
ciation for their spatial organization or functional diversity. Over the 
past two decades, imaging-based studies have revealed heterogeneity 
in cell morphology and distribution, including fibroblast-like chon-
drocytes with cytoplasmic processes, particularly in non-degenerate 
cartilage10–12. However, advances over the past 5–10 years in multi-omics 
approaches, which integrate single-cell RNA sequencing (scRNA-seq) 
and proteomics, have transformed the understanding of the complex-
ity of cellular heterogeneity in cartilage and IVD13. Studies using these 
approaches have uncovered previously unrecognized chondrocyte 
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markers for identifying chondrocytes. Some of the proposed markers 
(such as CD44, CD73, CD90 and CD105) are non-specific and overlap 
with MSCs and fibroblasts, and donor variability and methodological 
challenges hinder consensus19–21. This lack of distinct markers might, in 
part, reflect the unique niche in which chondrocytes reside (embedded 
within a dense ECM and largely isolated from direct cell–cell contact), 
which might result in limited biological pressure to maintain a robust 
repertoire of cell-surface proteins for intercellular communication. 
Instead, depending on their location, chondrocytes from various 
zones exhibit differences in the expression of specific markers associ-
ated with their unique ECM. Mature chondrocytes in the middle layer 
express characteristic cartilage components such as collagen type II, 
IX and XI, aggrecan and link protein22. By contrast, pre-hypertrophic 
and hypertrophic chondrocytes in the deep zone and calcified zone 
are marked by the presence of collagen type X23. Cells in the superficial 
zone are exclusive producers of lubricin (also known as proteoglycan-4 
(PRG4)), a surface protein crucial for joint lubrication. A small propor-
tion of superficial zone chondrocytes in non-degenerate cartilage 
express collagen type I and largely lack expression of the collagen 
types typical of deeper layers of articular cartilage, such as collagen 
type II24, which challenges earlier assumptions about the absence of 
collagen type I in healthy hyaline cartilage10. In addition to zonal vari-
ation, transcriptomic evidence from OA cartilage reveals the presence 
of METRNL+ and PRG4+ chondrocyte subtypes, which seem to reflect 
early and intermediate states of dedifferentiation and are regulated by 
Hippo signalling via Yes-associated protein (YAP) and transcriptional 
coactivator with PDZ-binding motif (TAZ), a key pathway in cartilage 
remodelling25.

Although a small number of studies previously described cells in 
cartilage with progenitor-like features26,27, the dominant paradigm for 
many years viewed cartilage as being composed of a nearly uniform cell 
population28. Therefore, the recognition that chondrocytes are in fact 
not a uniform population predates single-cell sequencing. Previous 
morphological and immunohistochemical studies using confocal 
microscopy, cytoskeletal staining and protein-level markers have 
highlighted heterogeneity in chondrocyte morphology and phenotype 
in situ10–12,29,30. These investigations revealed differences in cell volume, 
cytoplasmic projections and differential expression of collagen  
types I and VI, IL-1β and ECM-degrading enzymes, such as ADAMTS4, 
within macroscopically healthy cartilage.

Although these foundational studies underscored the func-
tional diversity of chondrocytes, the advent of single-cell and spatial 
multi-omics has dramatically enhanced the resolution of this het-
erogeneity, revealing transcriptionally distinct subtypes and their 
roles in homeostasis, inflammation and degeneration. Only advance-
ments in scRNA-seq technologies over the past decade have revealed 
the full extent of heterogeneity within cartilaginous tissues. Fur-
ther supporting this heterogeneity, seven transcriptionally distinct 
chondrocyte subpopulations were identified in OA cartilage, includ-
ing stress-metabolizing and ECM-synthesis-related subtypes that 
dominate at early and late stages of damage, respectively31; these 
shifts highlight functional transitions during OA progression. Cellu-
lar subpopulations with distinct phenotypes have been identified in 
the different layers of articular cartilage32,33 but also from weight and 
non-weight-bearing areas of articular cartilage tissues34. In rheuma-
toid arthritis (RA), studies using single-cell transcriptomics have also 
revealed immune-associated chondrocyte populations with distinct 
spatial distributions depending on mechanical load, which emphasizes 
the relevance of tissue location even under inflammatory conditions35.

A separate scRNA-seq study that focused on healthy and OA 
human articular cartilage also identified seven distinct chondro-
cyte subpopulations, providing a high-resolution transcriptional 
map of cell types within macroscopically healthy tissue36. In addi-
tion, single-cell transcriptomic advances enable a more granular and 
functionally annotated classification of chondrocyte subtypes than 
previous in situ immunolabelling-based studies that suggested phe-
notypic heterogeneity among chondrocytes12. These seven clusters 
were classified as fibrocartilage chondrocytes-1 and fibrocartilage 
chondrocytes-2 (expressing SH3BGRL3, S100A6, MYL9 and IGFBP5, 
LMCD1, respectively), cartilage progenitor cells-1 and cartilage progeni-
tor cells-2 (which express KIAA0101, BIRC5 and CDC20, UBE2C, CENPF, 
KIAA0101, BIRC5, respectively), regulatory chondrocytes (express-
ing EIF5A, PGK1, ANXA1, TUBA1A), pre-hypertrophic chondrocytes 
(expressing SOX9, COL9A3, COL11A1) and homeostatic chondrocytes 
(expressing TXNIP, IFITM3, GDF15 and TIMP1). The most apparent dif-
ferences between healthy and OA cartilage were an enrichment of regu-
latory and pre-hypertrophic chondrocytes in OA and an abundance 
of cartilage progenitor cells in healthy cartilage. A subpopulation of 
hypertrophic chondrocytes (expressing SLC39A14 and COL10A1) and 
distinct from hypertrophic chondrocytes in healthy cartilage was fur-
ther identified in the superficial region of damaged cartilage in human 
OA tissue36 (Supplementary Table 1).

Single-cell and spatial transcriptomic analysis of healthy and OA 
human knee articular cartilage identified 33 cell population-specific 
marker genes that define 11 chondrocyte populations, including 9 
known populations and 2 newly defined populations: pre-inflammatory 
and inflammatory chondrocytes37. This study established that the 

Box 1 | Signalling pathways involved 
in chondrogenesis
 

Cartilage development starts with cartilage progenitor cells 
differentiating from mesenchymal stem cells. Limb cartilage 
originates from the sclerotome, whereas head cartilage derives 
from the cranial neural crest. Articular cartilage progenitors 
arise from the interzone at future joint sites. Limb development 
begins with the condensation of cartilage progenitor cells into 
chondrogenic nodules (a process mediated by cell junctions), which 
enhances local gradients of chondrogenic growth factors (Fig. 1). 
This condensation commits mesenchymal cells to the chondrogenic 
lineage, a process that requires the activation of numerous 
signalling pathways.

Meniscus fibrocartilage development starts with interzone cells 
derived from embryonic mesenchyme. The gene signature 
associated with meniscus development is unique and differs from 
that of cartilage and ligament development, with the IGF1, GDF5, 
LGR5, SCX and GLI1 pathways having prominent roles.

Intervertebral disc formation shares regulatory factors with 
chondrogenesis, but shows key differences in cell types and tissue 
composition. The annulus fibrosus and cartilaginous endplates are 
mesenchymal in origin, whereas the nucleus pulposus develops 
from the notochord, initially containing notochordal cells replaced 
by chondrocyte-like cells (Fig. 1). SOX9 is essential for nucleus 
pulposus and annulus fibrosus development, with annulus fibrosus 
and cartilaginous endplate cells derived from SCX and SOX9 
double-positive progenitors.
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pre-hypertrophic chondrocyte and hypertrophic chondrocyte popu-
lations are potentially essential for disease progression in OA, and 
that the pre-fibrocartilage chondrocyte population, a distinct entity 
from the previously described fibrocartilage chondrocytes, is a major 
contributor to the stratification of patients with OA37. Another study 
investigated OA human knee articular chondrocyte populations 
under different mechanical loading conditions via scRNA-seq38. In 
line with previous studies, 12 chondrocyte subtypes were identified, 
and their functions, development and interactions with other cells were 
described. The study also identified a new chondrocyte subset, termed 
hypertrophic chondrocytes-C. These findings underscore the impor-
tance of delineating major cell populations within healthy cartilage and 
comparing them with pathological cells; such comparisons are key for 
comprehending the distinct roles of various chondrocyte populations 
and their respective pathogenic mechanisms, which contribute to the 
development of diseases such as OA.

In a 2023 study, a subset of chondrocytes with high expression of 
SPP1 (also known as osteopontin) was identified in human OA cartilage 

using scRNA-seq39. These SPP1+ chondrocytes exhibited the highest 
SenMayo score, a transcriptomic index used to quantify cellular 
senescence, among all chondrocyte subgroups and demonstrated 
strong angiogenic potential. Furthermore, the SPP1 signalling network 
was more abundant in OA cartilage than in healthy cartilage, and the 
receptor–ligand binding pattern of SPP1–CD44 appeared to have an 
important role in this network.

A 2024 single-cell study further refined the understanding of 
chondrocyte populations that are critical for the progression of OA. 
In a post-traumatic model of OA, pre-inflammatory and inflammatory 
chondrocyte subtypes emerge early and contribute to disease progres-
sion through cytokine-mediated crosstalk37. In parallel, angiogenic 
(Smoc2+Angptl7 +) and osteogenic (Col1a1+) chondrocytes have been 
identified as drivers of pathological vascularization and subchondral 
bone remodelling in later stages of disease40. These findings align with 
trajectory analyses that reveal time-dependent shifts in chondrocyte 
states following joint injury, with inflammatory and ECM-degrading 
signatures progressively dominating the transcriptomic landscape41.

Mesenchymal cells

Notochord

Meniscal fibrochondrocytes
SOX9, SCX, LGR5, IHH, SHH, 
GDF5, IGF1, FGF7, COL1A1, 
COL22A1 and ACAN

Hyaline articular chondrocytes
SOX9, SOX5, SOX6, FMOD, 
BMP, TGFβ, FGF, IGF1, MAPK, 
PI3K–Akt, IHH, SHH, WNT, 
PTHRP, GDF5, COL2A1, COL6A1, 
COL9A1, COL11A2, PRG4 and 
ACAN

Nucleus pulposus cells
TBXT, SOX9, FOXF1, CD24, 
CA12, SLC2A1, NCDN, NRP1, 
HIF1A, SHH, WNT, TGFβ, BMP 
(including GDF5 and GDF6), 
IGF1, COL2A1 and ACAN

Notochordal cell
NOTO, TBXT and FOXA2

Annulus fibrosus cells
MKX, SCX, SOX9, SFRP2, 
CD146, SM22, TNMD, TGFβ, 
COL1A1, COL5A1 and ACAN

Cartilaginous endplate cells
SOX9, RUNX2, GATA4, CYTL1, 
IBSP, IHH, BMP, PTN, COL6A1, 
COL10A1 and FBLN1

Fig. 1 | Main signalling pathways and markers that regulate the development 
of cartilaginous tissues. Mesenchymal cells differentiate into progenitor 
cells giving rise to various chondrogenic lineages, characterized by partially 
overlapping signalling pathways, and the expression of transcription factors 
and extracellular matrix (ECM) components. Nucleus pulposus cells are derived 
from the notochord. Hyaline articular chondrocytes: SOX9, SOX5 and SOX6 
(chondrogenesis); FMOD (collagen organization); BMP, TGFβ, FGF, IGF1, MAPK, 
PI3K–Akt and WNT (proliferation and differentiation); IHH, SHH and PTHRP (also 
known as PTHLH) (homeostasis and differentiation); GDF5 ( joint development); 
COL2A1, COL6A1, COL9A1, COL11A2, PRG4 and ACAN (ECM components). Meniscal 
fibrochondrocytes: SOX9 and SCX (differentiation); LGR5 (progenitor marker); 
IHH and SHH (homeostasis and differentiation); GDF5 ( joint development); IGF1 
(proliferation and differentiation); FGF7 (differentiation); COL1A1, COL22A1 
and ACAN (ECM components). Annulus fibrosus cells: MKX, SCX and SOX9 

(differentiation); SFRP2 (ECM remodelling); CD146 (also known as MCAM; 
progenitor marker); SM22 (also known as TAGLN; contractile phenotype); 
TNMD (tenomodulin, tendon-like identity); TGFβ (developmental signalling); 
COL1A1 and COL5A1 (tensile strength); ACAN (ECM components). Cartilaginous 
endplate cells: SOX9 and RUNX2 (differentiation); GATA4 and CYTL1 (boundary 
formation); IBSP (mineralization inhibition); IHH, BMP and PTN (ossification 
signals, hypertrophy and ECM remodelling); COL6A1 and COL10A1 (ECM 
components); FBLN1 (ECM organization and mechanical stability). Nucleus 
pulposus cells: TBXT, SOX9 and FOXF1 (differentiation); CD24, CA12 and SLC2A1 
(involved in hypoxic and microenvironmental adaptation); NCDN (lineage 
maintenance and ECM stability); NRP1 (developmental patterning); HIF1A 
(hypoxia response); SHH, WNT, TGFβ and BMP (including GDF5 and GDF6), IGF1 
(developmental signalling); COL2A1 and ACAN (ECM components).
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Similar to single-cell transcriptomics data, cytometry by time 
of flight (CyTOF) single-cell proteomics using a panel of 33 markers 
(which included cell-surface receptors, adhesion molecules, signal-
ling mediators and transcription factors) revealed three cartilage 
progenitor cell (CPC) variants (CPC I–III) in healthy and OA human 
cartilage42, which also included the previously identified migratory 
CPCs. CPC I was characterized by low CD105 and high CD54 (also known 
as ICAM-1) expression, and very active ERK1–2 signalling; CPC II had 
high levels of CD73 expression and the CPC III population was enriched 
for pro-inflammatory pathways, including nuclear factor-κB (NF-κB), 
signal transducer and activator of transcription 3 (STAT3), β-catenin 
and hypoxia-inducible factor 2α (HIF2α). Furthermore, a rare chon-
drocyte population, termed inflammation-amplifying (Inf-A) chondro-
cytes, was identified in patients with OA using CyTOF-based single-cell 
proteomics. Despite their atypical signalling profile, these cells were 
confirmed to express classical chondrogenic markers such as CD44 
and SOX9, affirming their chondrocyte identity. They exhibited high 
levels of IL1R1 (also known as CD121a) and TNFRII (also known as 
CD120b), as well as exclusive activation of JNK and SMAD1–5 signal-
ling pathways, and accounted for ~2% of the chondrocyte popula-
tion based on single-cell proteomic and transcriptomic analyses33. 
Owing to the established role of CD24 in mitigating inflammation, 
CD24-enriched chondrocytes were termed inflammation-dampening 
chondrocytes and displayed enrichment of inflammation and 
immune cell trafficking-related pathways. Thus, a combination strategy 

of enhancing these rare inflammation-dampening chondrocytes and 
inhibiting the inflammation-amplifying chondrocyte populations 
could be effective in mitigating inflammation in OA cartilage42. In a 
follow-up study, four senescent CPC populations were identified in 
human OA cartilage based on p16INK4a expression43. These senescent 
subsets, which included and expanded upon the previously defined 
CPC I–III populations, exhibited distinct inflammatory and catabolic 
signalling profiles.

Cellular complexity in the meniscus
The meniscus comprises three zones, the avascular (white) inner zone, 
the outer vascular (red) zone, and a transitional red–white zone. The 
avascular inner zone is subject to compressive loading, whereas the 
outer vascular zone is under tensile and torsional loading44. Cells within 
the meniscus have historically been described as fibrochondrocytes, 
a mixed phenotype reflecting both fibroblastic and chondrogenic fea-
tures, although microarray and scRNA-seq analyses have since uncov-
ered specific cell types and gene signatures, both within healthy and 
OA meniscus and across its distinct inner and outer zones.

In a study in which microarray analysis was used to investigate 
the differences in transcriptomes between OA and non-OA human 
meniscal tissues, bone-related genes such as SPARCL1, COL10A1 and 
WIF1 were upregulated, whereas VEGFA and POSTN were downregu-
lated within OA meniscal tissues. Cluster analysis of the array data 
showed that pro-inflammatory genes were highly expressed in the 
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Middle zone

Deep zone

Tidemark

Calcified
zone

Epiphyseal
bone

Cell subpopulations in nucleus pulposus:
Adhesion nucleus pulposus cells
Nucleus pulposus progenitor cells
CD24+ nucleus pulposus progenitor cells
E ector nucleus pulposus cells
Fibrotic nucleus pulposus cells
Homeostatic nucleus pulposus cells
Hypertrophic nucleus pulposus cells 
MK167+ nucleus pulposus progenitor cells
Regulatory nucleus pulposus cells

Cell subpopulations in hyaline 
articular cartilage:
Chondrocyte progenitor cells
E ector chondrocytes
Fibrochondrocytes
Homeostatic chondrocytes
Hypertrophic chondrocytes
Inflammatory chondrocytes
MirC cells
Pre-fibrochondrocytes
Pre-hypertrophic chondrocytes
Proliferative chondrocytes
Regulatory chondrocytes
Reparative chondrocytes
SnC cells
SpC cells

Cell subpopulations in the 
meniscus: 
Cartilage progenitor cells
Endothelial cells
Fibrochondrocyte progenitor cells
Fibrochondrocytes
Pre-hypertrophic chondrocytes
Proliferative fibrochondrocytes
Regulatory chondrocytes 

a
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Hyaline articular cartilage

Intervertebral disc

Knee joint Meniscus

Cell subpopulations in the annulus
fibrosus:
Endothelial cells
Endothelial progenitor cells
Homeostatic annulus fibrosus cells
Hypertrophic annulus fibrosus cells
Immune cells
Inner annulus fibrosus cells
MCAM+ annulus fibrosus progenitor cells
Outer annulus fibrosus cells
Pro-inflammatory annulus fibrosus cells
Regulatory annulus fibrosus cells

Cartilaginous endplate

Annulus fibrosus

Nucleus pulposus

Cell subpopulations in the 
cartilaginous endplate:
Chondroblasts
Regulatory chondrocytes
Homeostatic chondrocytes 
Pre-hypertrophic chondrocytes
Fibrochondrocytes 
Proliferative chondrocytes
Macrophages
T cells
NK cells

Fig. 2 | Cell populations in cartilaginous tissues. Single-cell RNA sequencing 
has identified numerous cell populations (only the main populations are 
shown in this figure) in hyaline articular cartilage and the meniscus (a) and the 

intervertebral disc (b). MirC, metal ion-related chondrocyte; NK cell, natural 
killer cell; SnC, senescent cluster; SpC, splicing chondrocyte.
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OA meniscus, whereas genes associated with tissue regeneration 
were more prominently expressed in the non-OA meniscus45. Healthy 
(non-OA) meniscus samples were taken from patients with partial 
meniscus tears that showed no macroscopic evidence for OA or other 
joint diseases; however, even a partial tear can influence the expres-
sion of specific genes, as there could be upregulation or downregula-
tion in post-traumatic inflammation-associated genes upon injury. 
In one study, scRNA-seq analysis of healthy human meniscus from 
patients undergoing amputation (mean Kellgren–Lawrence grade 0) 
compared with OA meniscus (mean Kellgren–Lawrence grade 3) was 
used to identify specific markers for OA meniscus. In contrast to the 
microarray analysis discussed earlier in this article, LCN2, RAB27B, 
PRDM1 and SERPINB2 were upregulated in human OA meniscal tis-
sues compared with healthy tissues, with LCN2 and RAB27B emerging 
from gene ontology as potential early-stage OA meniscus-specific 
markers46. The expression of both Lcn2 and Rab27b was increased for 
up to 6 months in spontaneously aged mice with OA46. However, the 
authors did not evaluate human meniscus at different disease stages 
of OA to observe whether these genes can be used as specific meniscus 
markers for early OA. Owing to meniscus tears being a potential start 
point for OA, finding an early-stage marker within the meniscus is vital 
to prevent the onset of disease47.

scRNA-seq analysis has also provided a greater understand-
ing of the cell types within the meniscus. Specifically, studies have 
identified seven cellular populations within the human meniscus: 
endothelial cells, cartilage progenitor cells, regulatory chondrocytes, 
fibrochondrocytes, pre-hypertrophic chondrocytes, fibrochondrocyte 
progenitors (also described as CD146+ pericyte-like cells) and prolif-
erative fibrochondrocytes48,49 (Supplementary Table 2). The avascular 
zone of the tissue also contains lymphocytes and myeloid cells, whereas 
the vascular zone has a greater proportion of endothelial cells and 
also Schwann cells that correlate with the presence of nerves within 
this region48. In both of the aforementioned studies, the presence of 
fibrochondrocyte progenitors within the tissue indicates the presence 
of regenerative populations within both the healthy and degenerative 
meniscus. A CD146+ (a typical pericyte marker, also known as MCAM) 
population that was isolated from healthy human meniscus had a 
multilineage differentiation capacity and expressed stem cell markers; 
however, within the degenerative meniscus, a loss of CD146+ cells led 
to an increase in a CD318+ (also known as CDCP1) cell population that 
displayed progenitor-like characteristics. The latter population could 
have a crucial role in meniscal degeneration and has been proven to be 
a marker for meniscus progenitor populations isolated from degen-
erative meniscus50. CD318 expression in injured meniscus tissue was 
reduced upon treatment with TGFβ; thus, CD138 could be a potential 
marker for meniscal degeneration49. The study supports the presence 
of progenitor populations within the meniscus described in previous 
human and bovine in vitro studies50–53.

At the tissue level, in vivo post-traumatic destabilized medial 
meniscus (DMM) mouse models of OA have demonstrated pathologi-
cal mineralization in the lateral joint compartment, a process known 
as lateral chondrocalcinosis, which can drive medial articular cartilage 
damage via LEF1 signalling54. These findings highlight the relevance 
of Wnt signalling, as LEF1 acts as a key downstream effector in the 
canonical Wnt beta-catenin pathway, in regulating meniscal stiffness 
and pathological mineralization. The data also suggest that alterations 
originating in the lateral compartment, such as chondrocalcinosis, 
might contribute to degenerative changes in adjacent joint structures, 
including the medial articular cartilage.

Cellular complexity in the intervertebral disc
Phenotyping studies using omics technologies at the transcriptome 
and proteome level have identified a wide range of markers of human 
notochordal cells55–58, healthy nucleus pulposus, annulus fibrosus, and 
cartilaginous endplate (CEP) cells and tissues59,60, as well as markers 
of degeneration59,61–64. These efforts to understand the nucleus pul-
posus cell phenotype resulted in the publication of an international 
consensus statement in 2015 on markers to distinguish nucleus pulpo-
sus cells from annulus fibrosus and CEP cells65. Nucleus pulposus cells 
express markers found in human and bovine notochordal cells66,67, sug-
gesting that at least a proportion of human nucleus pulposus cells are 
notochord-derived. However, additional progenitor cell populations 
have been identified within the human and mouse IVD (most notably 
Tie2+ GD2+ nucleus pulposus progenitor cells68), including cells from the 
nucleus pulposus, annulus fibrosus and CEP, which possess MSC-like 
properties such as multipotency69. Although some of these populations 
have been proposed to have regenerative potential, they highlight the 
complexity of IVD formation and the diversity of cells that exist within 
the disc during development, ageing and degeneration.

scRNA-seq is beginning to provide a more detailed understand-
ing of the cell subpopulations within the human IVD. Comparisons of 
the cells within the healthy human IVD have revealed differences in 
transcriptional profiles between nucleus pulposus cells and annulus 
fibrosus cells70, and comparisons of non-degenerate and degener-
ate IVD cells from the same donor have revealed a panel of potential 
biomarkers of disease71. Additionally, multiple distinct cell sub-types 
within both the human nucleus pulposus and annulus fibrosus have 
been identified72–77, with studies showing a shift in IVDD tissues towards 
populations with a more fibrotic phenotype, populations that might 
drive angiogenesis and an increased presence of immune cell-like 
populations, most notably macrophages, when compared with 
non-degenerate discs. Although the function of these subpopulations 
requires further investigation and functional validation, the alterations 
in cell populations might underpin the tissue-level changes observed 
during degeneration, and these studies highlight the diversity of cell 
phenotypes present within the human IVD throughout ageing and 
degeneration (Supplementary Table 3).

Alongside studies investigating cell populations associated with 
degeneration, scRNA-seq has also enabled identification of a puta-
tive PROCR+ progenitor cell population within the human nucleus 
pulposus78. Additionally, transcriptomic and protein-level analyses 
of human and mouse IVD during early embryonic development have 
identified populations during early (SOX10+) and late (cathepsin K+ 
(encoded by CTSK)) IVD formation as well as populations that are 
responsible for ECM homeostasis (CTSK+ and brachyury+ (encoded 
by TBXT))79. An integrated analysis of proteome sequencing, bulk RNA 
sequencing and scRNA-seq data identified SERPINA1 as a biomarker to 
regulate or predict the progress of IVDD80. Identification and functional 
characterization of these subpopulations within the adult human IVD 
could further elucidate their roles in tissue homeostasis and identify 
progenitor cell populations with potential for therapeutic application.

Ageing, inflammation and chondrosenescence
With age, cartilaginous tissues might gradually become damaged, 
which can lead to prevalent joint diseases such as OA and IVDD81. 
Notably, these degenerate tissues do not present a widespread apop-
totic phenotype82, leading researchers to investigate causal drivers of 
structural damage. In the past decade, research has focused on elu-
cidating the role of senescence in OA and IVDD pathophysiology83. 
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Cell  senescence (also termed chondrosenescence in articular 
cartilage) is characterized by an irreversible halt in cell division84,85. 
Cell senescence increases with age and correlates with progressive 
tissue degeneration and functional loss86–89.

Senescence in hyaline cartilage
Senescent cells often display dramatic changes in structure, metabo-
lism and secretory profile, indicating that senescent cells have a pleo-
tropic phenotype. These cells often display an increase in cell volume, 
senescence-associated β-galactosidase activity, senescence-associated 
heterochromatic foci and the expression of cell-cycle-related proteins, 
such as p16INK4a, p19ARF, p14ARF and p21CIP1 (refs. 85,89,90). Moreover, 
senescent cells contribute to a systemic increase in pro-inflammatory 
mediators88, as they secrete exosomes (known as senescence-associated 
secretory phenotype (SASP)) that contain pro-inflammatory mediators, 
chemokines (IL-1β, IL6 and CXCL8) and ECM-degrading enzymes, such 
as matrix metalloproteinases (MMPs) and cathepsins88,91. In addition 
to the systemic effect of senescent cells, it has been suggested that 
SASP-secreting senescent cells confer a ‘bystander effect’ that affects 
neighbouring cells, resulting in further induction or reinforcement of 
tissue senescence92,93 (Fig. 3). This process seems to be mediated by 
SASP-related factors and cytokines, which also contribute to age-related 
chronic inflammation90,94. Notably, mechanical insults to human hyaline 
articular cartilage contribute to senescence in the superficial zones, dis-
playing telomere erosion and reduced cell doubling95. In line with these 
observations, data from animal models of ageing and post-traumatic 
OA (such as those that use the anterior cruciate ligament transection 
procedure) show that the number of senescent cells is highest in the 
superficial zone (which is directly exposed to mechanical loading)96. 
Given that the superficial zone is enriched in stem-cell populations, 
the accumulation of senescent chondrocytes might interfere with the 
regenerative potential of the tissue after loading97. Cumulatively, these 
data suggest that mechanical loading entices the initial emergence of 
superficial senescent chondrocytes, which could be further increased 
with time via the SASP-mediated ‘bystander effect’. To this end, ageing 
and the inflammaging process can only contribute to the proportion 
of chondrosenescence in articular cartilage.

Humans and rodents exhibit a chronological increase in the 
senescence biomarkers p14ARF and p16INK4a, respectively; but these 
changes are not associated with increased levels of SASP, nor does loss 
of murine p16INK4a result in a mitigated OA phenotype98. Notably, the 
gradual acquisition of the chondrosenescent phenotype is suggested 
to be accompanied by chondrocyte hypertrophy and mineralization99, 
posing a specialized profile of senescent chondrocytes. Mechanis-
tically, this hypertrophy-related chondrosenescent feature is not 
fully understood, but evidence shows that cartilage-specific abla-
tion of SIRT1 (which is known to repress senescence100) resulted in 
severe post-traumatically induced ectopic osteophyte formation, 
meniscal mineralization and cartilage damage54, accompanied by 
increased chondrosenescent p16INK4a staining101. In a recent study, 
age-associated transcriptional changes, such as GATA4 upregulation, 
impaired chondrocyte ECM synthesis and amplified pro-inflammatory 
responses, providing a mechanistic link between cellular ageing and 
OA susceptibility102.

The relationship between inflammation and cellular senescence 
in the context of musculoskeletal disorders remains unclear, with both 
chronic and acute inflammation potentially contributing to the accumu-
lation of senescent cells in ageing tissues or after injury96,101. Although 
chronic inflammation can induce senescence, and anti-inflammatory 

treatments might clear senescent cells (Fig. 3), the effects of acute 
injury-related inflammation on senescence are not fully understood, 
suggesting a complex interplay between these processes.

Most in vivo studies, including studies describing cartilage senes-
cence, are traditionally performed in male mice given that they are 
reported to harbour a more severe OA phenotype than female mice103, 
and therefore the male models better support this chronological accu-
mulation in SASP and senescent cell phenotype96,104. In a 2024 study that 
examined a targeted treatment to enhance SIRT1 activity, aged female 
mice did not display a senescent phenotype, whereas aged male mice 
did have the senescent hallmark of H2Aγ105. These data insinuate that, 
at least in preclinical models, different phenotypes of senescence can 
occur owing to sex-related differences, which should be addressed in 
future research.

Senescence in the meniscus
The specific association of senescence in meniscal tissues has pre-
dominantly focussed on its association with articular cartilage. Thus, 
studies specifically examining senescence in meniscus are rare and 
more commonly related to studies investigating the aged meniscus106. 
A study that used gene databases from previous microarray analyses 
identified four genes (RRM2, AURKB, CDK1 and TIMP1) and microRNAs 
associated with these genes in senescent human meniscal tissues107, 
whereas another study showed that downregulation of FOXO1 and 
FOXO3 transcription factors in aged meniscal tissues increased  
susceptibility to OA108.

A study that aimed to identify specific OA markers using scRNA-seq 
analysis of healthy and OA human meniscal tissues, found a subset 
of cells with upregulated expression of fibroblast activating protein 
and the transcription factor ZEB1, and promoted ECM degradation 
and senescence109. Senotherapeutic drugs (therapies that target 
senescent cells) have yet to be directly applied to meniscal tissues, 
although the specific mechanisms that induce senescence remain to 
be elucidated.

Senescence in the intervertebral disc
Senescence often correlates with skeletal ageing, a major risk factor for 
IVDD and OA90. Other pathogenic factors, including oxidative, geno-
toxic and inflammatory stress, along with nutritional constraints that 
contribute to IVDD, all correlate with cell senescence. Consequently, 
senescence has an important role in the pathophysiology of IVDD110.

Early work showed a positive correlation between p16INK4a expres-
sion levels and disc degeneration in patients87. Later studies, using 
p16tdTOM reporter mice, showed increased levels of p16INK4A, p21 and 
senescence burden in aged mouse IVD111. These authors, using a 
model of conditional deletion of p16INK4A (AcancreERT2;p16INK4a), showed 
a compensatory role of p19ARF in the senescence process. Although 
p16INK4A was dispensable for the induction and maintenance of senes-
cence, this study established a causal relationship between p16INK4A 
with SASP and altered ECM homeostasis. These findings aligned with 
studies of a mouse model of cyclin dependent kinase inhibitor 2A 
(Cdkn2a; encoding p16INK4A) germline deletion, which showed a reduc-
tion in oxidative stress and disc degeneration following tail suspen-
sion injury112. Furthermore, a study using a genetically engineered 
p16INK4A-3MR transgenic mouse model showed that systemic clearance 
of p16INK4a-positive cells ameliorated age-related disc degeneration113; 
mice that lacked p16INK4A-positive senescent cells had decreased ECM 
catabolism and reduced inflammation. These findings support the 
causal relationship between senescent cells and IVD degeneration114,115.
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Another study used scRNA-seq to identify compartment-specific 
changes in human IVDD and observed gene signatures of cell senes-
cence, as well as a notable reduction in cells, particular stem cells and 
fibroblast progenitors, expressing markers of immature cell types in 
both the annulus fibrosus and the nucleus pulposus116. Other stud-
ies that investigated the cellular heterogeneity during human IVDD 
have observed changes in processes such as ferroptosis, which, simi-
lar to senescence, are linked to oxidative stress and inflammation117. 
A 2024 study using scRNA-seq, identified autophagy-related protein 
9 A (ATG9A) as a key marker associated with IVDD, whereby ATG9A 
expression is diminished during degeneration, which suggests reduced 
autophagic flux118. Notably, basal autophagy has a protective func-
tion during ageing-related pathologies, and dysregulated autophagy 
contributes to many pathologies that affect the spinal column119,120. 
However, a 2021 study also showed the importance of autophagy in 
establishing full senescence through regulated protein stability and 
the importance of this process during human OA121. Further investiga-
tions are needed to understand this relationship in the context of IVDD. 
Although similarities have been noted between other skeletal tissues 
and the IVD, pathways (such as cGAS–STING) that are linked to cell 
senescence did not contribute to senescence burden in the ageing 
mouse with IVD, highlighting the cell and tissue type specificity of the 
mechanisms driving cell senescence122.

Senotherapeutic agents are therapies that target cellular senes-
cence and include both senolytics (which reduce inflammation and 
improve tissue function by removing senescent cells) and senomor-
phics (which help maintain tissue function by reducing the negative 
impact of senescent cells, such as chronic inflammation, without elimi-
nating these cells). These therapies show great potential for treating OA 
and IVDD by targeting senescent cells in affected tissues. However, fur-
ther research is needed to elucidate the broader effects of senescence 
on joint health, to develop reliable biomarkers for patient selection 

and to optimize treatment protocols for disease models and cell-based 
therapies. For developing novel senotherapeutic strategies, single-cell 
analysis could be instrumental in identifying specific cellular sub-
populations and their roles in senescence, thereby allowing for tar-
geted interventions to mitigate age-related tissue dysfunction. This 
approach could help to elucidate the complex interactions between 
senescent cells and their native niche, potentially leading to novel 
senotherapeutic agents that could improve tissue regeneration and 
function (Box 2).

Future prospects
Although genomic and transcriptomic analyses, including single-cell 
transcriptomic analyses, have transformed the understanding of 
chondrocyte heterogeneity, their use in predicting functional ECM 
outcomes remains limited. For instance, transcript levels of ACAN or 
COL2A1 alone do not reflect the sulfation patterns of glycosaminogly-
cans or the cross-linking density of collagen fibrils, both of which are 
critical for load-bearing capacity123–125. This example highlights the need 
to better integrate single-cell multi-omics approaches with tissue-level 
multi-omics analyses, as well as to complement transcriptomics data 
with direct assessments of ECM biomechanics and post-translational 
modifications, as gene expression alone might not faithfully predict 
tissue-level functionality126.

Notably, differences in study outcomes often arise from meth-
odological and biological variables; for instance, time points can 
critically influence results: early-stage OA tends to involve tran-
sient inflammatory or proliferative chondrocyte states, whereas 
late-stage disease predominantly exhibits catabolic or senescent 
populations127. Species-specific differences (such as rodent versus 
human cartilage)128 and OA induction methods (such as surgical desta-
bilization versus chemical injury)129 yield distinct pathophysiology, 
which influences the observed transcriptional profiles. For example, 

c  Local and systemic inflammation d Attenuation of senescence signalling
by senotherapeutics

a  Local SASP signalling b  Expansion of pre-senescent cells

Healthy, non-senescent cell
Pre-senescent cell (DNA damage)
Stress signals from senescent cells (’bystander e�ect’)
Stress signals from systemic circulation (systemic inflammation)

Apoptosing cell
Senescent cell
Senotheraputic agents (such as senolytics and senomorphics)
Modulation by senotheraputic agents

Fig. 3 | Senescence in cartilaginous tissues. A proposed trajectory wherein 
the frequency of cellular senescence in cartilage increases in proportion to 
both chronic and acute inflammation. Although the frequency of senescent 
cells in the tissue is initially low (a), healthy cells accumulate DNA damage 
over time with increasing levels of inflammation and oxidative stress (b). 
Moreover, senescent cells negatively affect neighbouring healthy cells through 
the production and secretion of senescence-associated secretory phenotype 
(SASP) factors (known as the ‘bystander effect’), which predisposes them to 
senescence. Various external stimuli, such as trauma, injury and infection, 
promote further inflammation and amplify the bystander effect, causing healthy, 

non-senescent cells to undergo apoptosis, whereas senescent cells are more 
resistant to inflammatory conditions and instead undergo cellular dysfunction. 
Local (that is, intra-articular) and systemic inflammatory mediators arising 
from chronic co-morbidities (such as obesity, diabetes and cardiovascular 
disease) further exacerbate the process (c). Senotherapeutic agents selectively 
induce apoptosis in senescent cells or modulate their secretory phenotype, 
thereby reducing their accumulation and mitigating the harmful effects of their 
pro-inflammatory secretome, especially the senescence-inducing effects of 
SASP factors (d).
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mechanical injury models predominantly activate mechanosensitive 
pathways (such as YAP and TAZ)130, whereas inflammatory models 
(such as collagenase-induced OA) amplify cytokine-driven responses131. 
Sex-specific differences in hormone signalling and immune regula-
tion might underlie divergent cellular subpopulations in men and 
women132. Furthermore, technical variables such as cell isolation proto-
cols (for example, the effects of enzymatic digestion on stress-response 
genes) and sequencing depth can skew population distributions133. 
Acknowledging these factors is essential for understanding differences 
across studies and advancing translational insights into chondrocyte 
heterogeneity.

Despite advances in the field, several critical questions remain 
unanswered. The precise molecular mechanisms that regulate the 
transition of chondrocytes from healthy to pathological states are still 
poorly understood. Additionally, the role of systemic factors, such as 
age, sex, metabolic health and mechanical loading, in shaping chon-
drocyte subtype distributions necessitates further investigation134. 
Addressing these gaps could substantially refine the understanding of 
cartilage degeneration and inform the development of targeted thera-
peutic strategies. Longitudinal single-cell analyses of post-traumatic 
OA models are needed to resolve temporal shifts in chondrocyte sub-
types (such as fibrocartilage and pre-inflammatory chondrocytes) and 
their causal roles in fibrosis and inflammation37,135.

Critically evaluating the translatability of animal models to human 
OA, particularly given the anatomical disparities in cartilage thickness 
and biomechanical loading patterns between quadrupedal rodents 
and bipedal humans136, is crucial. Although animal models such as 
anterior cruciate ligament (ACL) rupture or DMM provide controlled 
systems for studying OA progression, they often fail to replicate the 
chronic, multifactorial nature of human disease, which involves age-
ing, systemic inflammation and cumulative mechanical stress136,137. 
Notably, cartilage that is classified as ‘non-degenerate’ in OA joints 
might still exhibit molecular alterations owing to prolonged exposure 
to pro-inflammatory mediators and abnormal mechanical stresses, 
as evidenced by proteomic and transcriptomic profiling34,138. Even 
in macroscopically intact regions, osteoarthritic chondrocytes can 
display upregulated catabolic pathways (such as MMPs, ADAMTS4 and 
ADAMTS5) and reduced anabolic activity138, highlighting the need for 
cautious interpretation of ‘healthy’ cartilage.

Looking to the future, integrating spatially resolved multi-omics 
technologies, such as spatial transcriptomics and proteomics, will 
enable chondrocyte subsets to be mapped within their native niches. 
Such approaches could reveal dynamic changes in cellular behaviour 
during disease progression and provide insights into the molecu-
lar drivers of cartilage disorders. Moreover, longitudinal studies 
using these technologies might help to identify biomarkers for early 
detection of joint diseases, offering opportunities for timely and more 
effective interventions.

We propose that future applications of machine learning and 
artificial intelligence for the analysis of complex multi-omics datasets 
will uncover previously unrecognized patterns in chondrocyte gene 
expression and interactions, potentially leading to the discovery of 
novel therapeutic networks and safer druggable targets. Furthermore, 
developing predictive models on the basis of patient-specific data 
could facilitate personalized medicine approaches, tailoring treat-
ments to individual disease trajectories. From a translational perspec-
tive, these findings have the potential to substantially improve clinical 
outcomes for patients affected by conditions such as OA and IVDD. 
Distinct chondrocyte phenotypes could offer new opportunities to 

refine current therapeutic strategies. In OA, inflammatory chondro-
cyte subsets represent potential targets for biologic therapies aimed 
at suppressing catabolic signalling, whereas progenitor-like popula-
tions could be harnessed for regeneration. Therapies that target these 
inflammatory chondrocyte subtypes could mitigate cartilage degrada-
tion in OA and enhancing the regenerative potential of homeostatic or 
reparative subpopulations could improve cartilage repair. Conversely, 
failed OA trials targeting broad-spectrum MMPs highlight the need 
for subtype-specific approaches to avoid disrupting homeostatic 
ECM maintenance. For meniscus-tissue engineering, hypertrophic 
chondrocyte subsets, which drive calcification in degenerated menisci, 
could be selectively inhibited, whereas ECM-producing phenotypes 
might be expanded to enhance graft integration. Similarly, in IVDD, 
nucleus pulposus cells with notochord-like signatures show enhanced 
proteoglycan synthesis139, suggesting their potential in cell-based 
IVD regeneration. Therefore, future efforts should explore combined 
approaches that simultaneously suppress pro-inflammatory pathways 
and activate regenerative ones, optimizing therapeutic efficacy (Box 3).

Conclusions
Single-cell technologies are transforming the understanding of chon-
drocyte heterogeneity and functionality across cartilage types and 
disease states. Distinct chondrocyte subtypes have been identified in 

Box 2 | Senotherapeutic agents for 
joint diseases
 

Senotherapeutic agents, which aim to modulate or eliminate 
senescent cells, are emerging as potential treatments for osteoarthritis 
(OA) and intervertebral disc (IVD) degeneration (IVDD). Intra-articular 
administration of senotherapeutic modulators has shown promise 
in reducing OA severity by modulating senescent chondrocytes in 
preclinical rodent models. Additionally, senolytics can also induce 
apoptosis in senescent IVD cells, thereby mitigating IVDD.

Most research focuses on the effects of senescence on 
chondrocytes during OA and IVDD but less is known about its 
role in other joint tissues or pain transmission. Senotherapeutic 
drugs have yet to show notable progression in clinical trials, which 
suggests that improved patient selection using senescence-related 
biomarkers is needed for more effective and quantifiable clinical 
outcomes.

Acute post-traumatic OA models might require different 
senotherapeutic drug dosages or administration methods 
compared with age-induced OA models. However, it should be 
noted that intra-articular administration of senotherapeutic agents 
is likely to target the senescent chondrocyte population that is 
located in the superficial zone, eliminating their detrimental effects 
on the tissue and promoting a pro-regeneration milieu. Similarly, 
the efficacy of cell transplantation approaches could be affected 
by the chondrosenescent environment, highlighting the need to 
consider the ‘seno-severity’ of the host. Future research should 
focus on understanding the broader effects of senescence on the 
entire joint and use biomarkers to identify suitable candidates for 
senotherapeutic therapies. Pretreatment with senotherapeutic 
agents could potentially enhance the outcomes of cell-based 
therapies by creating a more favourable environment for 
transplanted cells.
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hyaline articular cartilage, meniscal cartilage and the IVD, which exhibit 
unique gene expression profiles that correlate with their functional 
roles in health and disease. Understanding how these cells interact 
within their native niches and with cells in other joint compartments is 
crucial for developing more effective regenerative therapies. A deeper 
understanding of the cellular and molecular diversity of these cell 
populations, their crosstalk and relative influence can help to develop 
therapeutic candidates that can tilt the inflammatory and catabolic 
balance towards restoration of homeostasis and tissue regeneration. 
This approach will be particularly beneficial in the early stages of 
disease pathogenesis and progression. An enhanced knowledge of 
cartilage biology and its molecular regulation is invaluable, not only 
for understanding joint disorders but also for bone trauma repair. 
This paradigm shift will open up new avenues for targeted therapeutic 
strategies in diseases such as OA and IVDD. The identification of key 
molecular markers associated with specific chondrocyte states could 
lead to novel biomarkers for early diagnosis and therapeutic targets 
for these disorders.

Published online: 10 July 2025
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Abstract

Platelets are central players in inflammatory and thrombotic responses 
that drive the onset and progression of rheumatic diseases. In particular, 
they regulate immunothrombosis, a defence mechanism in which the 
immune and blood-clotting systems cooperate to contain infections or 
vascular damage. Although immunothrombosis can help to preserve 
blood-vessel integrity and promote healing, it becomes harmful when 
exaggerated or chronic. In rheumatic diseases, such as systemic lupus 
erythematosus, systemic sclerosis and antiphospholipid syndrome, 
immunothrombosis contributes to persistent inflammation, abnormal 
blood-clot formation and long-term damage to the small blood vessels. 
It has also been implicated in maintaining autoimmune responses to 
autoantigens released by neutrophils. Platelets are among the first 
responders to vascular injury and influence the activity of immune cells, 
particularly neutrophils, by promoting the formation of neutrophil 
extracellular traps. Platelets express proteins such as P-selectin and 
the damage-associated molecule high-mobility group box 1 (HMGB1), 
which have distinct and non-redundant roles, both via direct interactions 
locally at sites of vascular damage and systemically via the release 
of extracellular vesicles. Understanding how platelets contribute to 
vascular inflammation and clotting in autoimmune settings elucidates 
disease mechanisms and might lead to the identification of new 
therapeutic targets.
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whereas in SLE, platelet interactions with immune cells fuel immu-
nothrombosis and autoimmunity9,10. APS represents a paradigm of 
pathological immunothrombosis, in which autoantibody-driven plate-
let activation leads to complement activation and thrombosis11,12; 
however, direct evidence of distinct platelet subsets in these diseases 
is still lacking.

This Review highlights the evolving role of platelets in rheumatol-
ogy, focusing on their contributions to immunothrombosis and their 
potential as therapeutic targets. By integrating insights from studies 
published in the past decade, we aim to provide a perspective on how 
platelet activation shapes disease outcomes in SSc, SLE, APS, RA and 
other rheumatic conditions. Recognizing platelets as key orchestrators 
of immune responses might pave the way for innovative treatment 
strategies in rheumatic patients that extend beyond conventional 
anti-thrombotic approaches.

The activation and function of platelets
Platelet release occurs through iterative fission events, during which 
megakaryocyte-derived proplatelets extend into blood vessels and 
fragment into platelets13. Under a steady state, megakaryocytes pro-
duce platelets mostly within the bone marrow14,15. A stress-responsive 
population of megakaryocytes emerges in aged mice, which seems to 
promote the production of a distinct subset of platelets that exhibit 
heightened sensitivity to stimuli and contribute to age-related throm-
bocytosis and thrombotic responses triggered by vascular injury16,17. 
During inflammation the demand for platelets increases, also trigger-
ing adaptations in megakaryocytes. Stress conditions, such as sepsis, 
activate alternative sites of thrombocytopoiesis, such as the spleen 
and lung18–20, alongside diverse mechanisms that regulate platelet 
production in the bone marrow and lung20. Human lungs contain hae-
matopoietic progenitor cells that exhibit a bias towards erythroid and 
megakaryocyte lineages within the haematopoietic progenitor tree21. 
Although only a small fraction (approximately 10%) of platelets origi-
nate from lung megakaryocytes under steady-state conditions, this 
proportion during thrombocytopenia, which is induced by sterile or 
infectious triggers, nearly doubles21. Although similar reprogramming 
of platelet production probably occurs in rheumatic diseases, driven by 
antibody-mediated platelet clearance and potentially by inflammatory 
alterations in the pulmonary microenvironment22,23, the understanding 
of these processes in humans remains limited, underscoring a critical 
gap in current research.

Lung megakaryocytes possess immune functions, including anti-
gen processing and presentation to CD4+ T cells23. Distinct stem cells 
have been identified that use separate pathways for the generation of 
distinct megakaryocyte-restricted progenitors, relying on a slower, 
steady-state multipotent pathway alongside a fast-track, emergency-
activated, platelet-restricted pathway24. These findings align well 
with the notion that stress-responsive thrombocytopoiesis programs 
platelets for enhanced immune interactions, for example, through 
adhesion mechanisms in lung-derived platelets25 and CD40 ligand 
(CD40L) expression in spleen-derived platelets, rather than exclusively 
prioritizing haemostasis (Table 1).

The lung is a frequent and particularly vulnerable target in sys-
temic autoimmune diseases, including SLE, SSc, RA, antineutrophil 
cytoplasmic antibody (ANCA)-associated small-vessel vasculitis, 
idiopathic inflammatory myopathies and Sjögren syndrome.

Interstitial lung disease (ILD), a frequent manifestation in systemic 
autoimmune diseases, is marked by inflammation and/or fibrosis of 
the pulmonary interstitium and can progress to irreversible fibrosis 

Key points

	• Immunothrombosis integrates innate immune defence with 
coagulation, when dysregulated, it sustains maladaptive immune 
responses, driving inflammation, thrombotic complications and 
pathological tissue remodelling — highlighting its relevance as a key 
therapeutic target.

	• Platelets are central orchestrators of immunothrombosis, bridging 
vascular injury and immune activation in rheumatic diseases.

	• Although the hallmarks of immunothrombosis are shared across 
rheumatic diseases, the cellular mediators and initiating pathways vary 
according to disease-specific inflammatory contexts.

	• Pharmacological targeting of immunothrombosis holds promise not 
only for reducing autoimmune-driven cardiovascular risk but also for 
controlling chronic inflammation and limiting tissue damage.

Introduction
Platelets are traditionally recognized for their role in haemostasis, but 
their functions extend well beyond clot formation. They are increas-
ingly understood as pivotal regulators of inflammation, particularly 
through their involvement in immunothrombosis — a coordinated pro-
cess that bridges innate immune activation with coagulation1. During 
this process, platelet activation is triggered by pathogen-associated 
molecular patterns and damage-associated molecular patterns, 
which are recognized by pattern recognition receptors on platelets. 
This activation leads to the formation of a clot and the recruitment 
of immune cells, thereby linking innate immune responses to the 
coagulation cascade aimed at containing intravascular infections, 
clearing immune complexes and sustaining vessel integrity. In sys-
temic autoimmune diseases, such as systemic sclerosis (SSc), systemic 
lupus erythematosus (SLE), antiphospholipid syndrome (APS) and 
rheumatoid arthritis (RA), platelets become hyperactivated, trigger-
ing immunothrombosis in the absence of a pathogen or infection2–4. 
This inappropriate activation leads to a state of chronic inflammation, 
as the immune system mistakenly responds as if a pathogenic threat 
were present.

Widespread immune dysregulation, which leads to microvascular 
injury and tissue remodelling, is a feature of many rheumatic diseases. 
Platelets have an underappreciated role as drivers and amplifiers of 
immune responses4. Beyond their haemostatic function, platelets inter-
act with immune cells through surface receptors, extracellular vesicles 
and the release of bioactive molecules5. These interactions underlie 
neutrophil activation and the formation of neutrophil extracellular 
traps (NETs), exacerbate endothelial dysfunction and enhance the 
production of autoantibodies, which establishes a self-perpetuating 
cycle of inflammation and vascular damage.

Advances over the past decade have reshaped understanding 
of platelet heterogeneity, revealing that distinct subsets of platelets 
contribute to immune responses4,6. Although some platelets primarily 
contribute to haemostasis, others have immunomodulatory roles4. This 
diversity is relevant in rheumatic diseases, whereby platelet activation 
profiles influence disease severity and progression. In SSc, for example, 
platelet-derived extracellular vesicles carrying high-mobility group box 1  
(HMGB1) exacerbate fibrosis and microvascular involvement7,8,  

http://www.nature.com/nrrheum


Nature Reviews Rheumatology | Volume 21 | August 2025 | 478–493 480

Review article

owing to abnormal wound healing and excessive fibroblast activation26. 
Clinically apparent lung fibrosis is particularly common in patients with 
SSc, affecting up to 60% of individuals27. Although various immune 
mechanisms contribute to fibrosis, early fibrotic events remain poorly 
defined. Notably, in the bleomycin-induced model of lung fibrosis, 
megakaryocytes accumulate within the lung, where they promote 
fibroblast proliferation and trans-differentiation into myofibroblasts28. 
Whether a similar contribution of lung megakaryocytes occurs in 
patients with autoimmune diseases remains to be determined. Further 
research is warranted to clarify whether platelets derived from these 
lung-resident megakaryocytes18 contribute to local fibrotic processes 
or systemic inflammatory responses.

Mature platelets, which have an average lifespan of 7–10 days, cir-
culate in the bloodstream, patrolling the vasculature; platelets circulate 
near the vascular wall, without substantial detectable interaction with 
the endothelium29. A bundle of peripherally oriented microtubules 
that interact with the cytoplasmic spectrin skeleton maintain the 
lens-like shape of platelets30,31. Despite their seemingly inert appear-
ance, non-activated platelets are integral to the maintenance of a stable 
intravascular environment. They preserve microvascular barrier integ-
rity, preventing the spontaneous leakage of fluids and solutes across 
the endothelium, even in the absence of detectable vascular injury or 
inflammation32,33. Moreover, resting platelets generate extracellular 
adenosine, which is known for its anti-inflammatory properties and 
regulatory effects, via the action of membrane ectonucleotidase such 
as CD73 (refs. 34,35). Fascinatingly, platelets from long-term immo-
bilized, hibernating brown bears, which are protected from venous 
thromboembolism, resist activation and display an antithrombotic 
signature, which includes a substantial reduction in heat shock pro-
tein 47 (ref. 36); this decrease in heat shock protein 47 can attenuate 
immune cell activation across various mammalian species36.

Thus, healthy platelets dynamically adapt to organismic needs 
based on environmental conditions by regulating their activation 
threshold. Accordingly, platelets readily respond to changes in their 
microenvironment, maintaining lymphatic structure and support-
ing functional contraction capacity37, and also seal gaps in the vas-
cular endothelial lining during leukocyte extravasation. A failure in 
these actions can exacerbate microvascular damage, particularly in 
rheumatic diseases.

The role of platelets in vascular injury
In response to vascular injury, platelets are activated by changes in 
rheological forces — such as altered shear stress and disturbed blood 
flow — and subsequently collide with the exposed subendothelial 
matrix, which is primarily composed of fibronectin, laminin and fibrillar 
collagen38. von Willebrand factor (vWF), which is immobilized onto the 
exposed matrix, interacts with the platelet mechanoreceptor, GPIb. 
Under shear stress, vWF binds to the platelet GPIb–IX–V complex and 
to αIIbβ3 integrin (also known as GPIIb/GPIIIa). Additionally, platelets 
release stored moieties, including fibrinogen, and undergo a rapid 
metamorphosis, altering their morphology, function and lifespan to 
meet the physiological requirements of the vasculature3.

Upon tethering to the subendothelial matrix, platelets undergo 
morphological and functional changes, including firm adhesion and 
spreading across the damaged vascular wall. These changes facilitate 
interactions with other platelets and their subsequent aggregation, 
which is mediated by the αIIbβ3 integrin–fibrinogen interactions, 
culminating in the formation of the primary haemostatic plug that 
prevents bleeding. Exposed anionic phospholipids provide a negatively 
charged scaffold for the assembly of coagulation factors. Thrombin 
converts fibrinogen to fibrin, reinforcing and stabilizing the developing 
haemostatic plug39,40. Activation of protease-activated receptors 1 and 4 
further enhances platelet activation, spreading and contracting41. Inte-
gral to this process are molecules that interact with subendothelial 
components, including integrins and tyrosine kinase-linked recep-
tors, such as the GPIb–IX–V complex and GPVI glycoproteins. Platelet 
aggregation also reflects their ability to sense sudden accelerations 
and decelerations in shear stress within the vessel wall. The relevance 
of mechanotransduction in platelet activation has been reviewed 
elsewhere42.

α-granules are specialized storage organelles within platelets 
that undergo fusion with the plasma membrane, enabling the release 
of preformed bioactive mediators. These granules, which constitute 
10% of platelet volume, are mobilized after the fusion of the gran-
ule membrane with the platelet open canalicular system and plasma 
membrane43. They contain molecules that are crucial for platelet hae-
mostatic actions (such as vWF, fibrinogen and factor V), angiogenic 
and anti-angiogenic signals (such as vascular endothelial growth fac-
tor (VEGF), angiostatin and CXCL4 (also known as platelet factor 4)), 
growth factors (such as platelet-derived growth factor (PDGF)), CXCL7 
(also known as β-thromboglobulin), thrombospondin and matrix 
metalloproteases44. Most molecules stored in α-granules are released 
into the bloodstream. Other signals that are crucial for cell-to-cell 
interactions, including P-selectin and CD40L, are upregulated on the 
surface of platelets, which ensures that activated platelets exclusively 
interact with and are recognized by leukocytes, enabling them to guide 
inflammatory responses44.

Dense granules mostly store small molecules, including ADP, ATP 
and Ca2+. The interaction of ADP with purinergic receptors at injury 
sites contributes to further activation of αIIbβ3 integrin. This paracrine 

Table 1 | Comparison of megakaryocytes from the bone  
marrow, lung and spleen

Feature Bone 
marrow 
megakar­
yocytes

Lung 
megakaryocytes

Spleen 
megakar­
yocytes

Refs.

Ploidy 2 N to 32 N 2 N to 16 N 8 N to 64 N 19,163

Platelet 
production

Yes Produce fewer 
platelets under 
steady-state 
conditions, but 
increase output 
in response to 
thrombocytopenia

Not known 14–16,20, 
21,164,165

Haemostasis Yes Not known Not known 14,16,19

Role in 
thrombosis

Yes Yes Not known 14,16, 
19,66

Role in 
inflammation

Yes Yes Linked to acute 
inflammatory 
responses 
(such as sepsis)

14–19,24, 
25,28,165

Role in 
extracellular 
vesicle 
production

Yes Not known Not known 166

‘N’ represents the number of chromosome sets.
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activation, in conjunction with thromboxane A2 production, cytoskel-
etal contraction and the recruitment of additional platelets, works 
synergistically to sustain and amplify platelet aggregation43,44.

The role of platelets beyond haemostasis
Platelets serve as early responders, alongside neutrophils, at sites of 
inflammation45–47. Leukocyte extravasation damages the integrity of 
endothelial barriers owing to the release of proteolytic enzymes and 
other mechanisms of damage that remain poorly understood. This phe-
nomenon has been consistently demonstrated across diverse models, 
including middle cerebral artery occlusion, cremaster muscle inflam-
mation, experimental colitis, peritonitis, acute lung injury and various 
malignancies48. Electron microscopy studies from the 1960s showed 
that individual platelets localize to sites of leukocyte transmigration49 
where they can accumulate in response to vascular cues such as sensing 
density gradients of deposited fibrinogen50,51. This haptotactic process 
enables platelets to plug holes made at endothelial cell junctions by 
extravasating neutrophils, thus preventing bleeding. Moreover, plate-
lets accumulate at sites where they can surround invading bacteria and 
alert the immune system29,48,50,52.

Platelets can also prevent microvascular haemorrhage in the 
absence of detectable plug formation; however, their pro-coagulant 
properties are crucial. Fibrinogen and thrombin are recruited to the 
membrane of phosphatidylserine-expressing platelets, contributing 
to fibrin deposition and the sealing of disruptions to microvascular 
integrity. This process involves the release of vasoactive signals, such 
as angiopoietin 1, from dense granules and α-granules, which stabilizes 
endothelial junctions, hindering further leukocyte transmigration, and 
ultimately terminating the inflammatory response53.

Leukocytes that interact with endothelial and platelet selec-
tins traverse the vessel wall and migrate via the perivascular matrix. 
Interactions between P-selectin and P-selectin granulocyte ligand 1 
(PSGL-1, expressed on neutrophils and monocytes) activates outside-in 
signalling events that lead to the transactivation of β2 integrins on 
leukocytes54, which slows neutrophil rolling and facilitates adhe-
sion to endothelial cells. Conversely, interactions between E-selectin 
and E-selectin ligand-1 result in the activation of the αMβ2 integ-
rin (also referred to as Mac-1) on the leading edge of the migrating 
leukocyte55,56.

These pathways work cooperatively. Neutrophils that fail to roll 
and adhere properly will struggle to interact properly with E-selectin 
and will be unable to crawl. Platelet P-selectin is necessary for neu-
trophil transmigration through vessel walls at sites of injury57. The 
extent, kinetics and sites of leukocyte and platelet interactions change 
depending on the vessel conditions and can determine the onset and 
termination of the vascular response. Moreover, extracellular vesicles 
released by activated platelets accumulate in the lymph and interact 
with lymphatic endothelial cells contributing to lymphatic contractility 
and function37. This observation supports the idea that platelet-derived 
extracellular vesicles exert protective effects at sites distant from their 
original locations of activation, aligning with the concept that activated 
platelets are integral to an ‘immune continuum’ that is involved in tissue 
repair and the maintenance of homeostasis.

Platelets as sensors of inflammation
Alongside receptors for identifying vascular defects, platelets express 
an array of receptors for microbial (pathogen-associated molecular 
patterns) or sterile (damage-associated molecular patterns) inflam-
matory signals. These receptors include Toll-like receptors (TLRs), 

Nod-like receptors and C-type lectin receptors, which can be found at 
various cellular locations, including the plasma membrane, endosomes 
and the cytosol58. Platelets also recognize immune complexes through 
Fcγ receptors, and respond to inflammatory cytokines such as IL-1β 
and TNF via dedicated receptors58,59.

Thus, platelets, even in the absence of direct vascular threats, per-
ceive and react to environmental inflammatory signals. The success of 
biologic agents that neutralize TNF in patients with immune-mediated 
diseases emphasizes the role of pro-inflammatory cytokines in chronic 
human diseases59,60. These agents have off-target effects, such as con-
ferring protection from cardiovascular events, notable in patients with 
RA61 and spondyloarthropathies62. TNF activates platelets indepen-
dently of agonists such as collagen, ADP or thrombin receptor agonists. 
Conversely, TNF inhibitors used to manage synovial manifestations 
and prevent articular damage inhibit platelet activation, suggesting 
that TNF-induced platelet activation contributes to the heightened 
cardiovascular risk observed in people with rheumatic disease59.

Activated platelets, if not promptly cleared from the bloodstream, 
can bind to fibrin and chondroitin sulfate A63. As a result, the platelet 
surface serves as a template for the deposition of immunoglobulins, 
irrespective of their antigen specificity, in a configuration capable 
of activating complement. This cascade promotes interactions with 
myeloid cells, ultimately propagating thrombosis63. Given the critical 
roles of antibody production and complement activation in systemic 
autoimmune diseases, these findings further link platelet activation, 
thrombosis and subsequent downstream events to the pathogenesis 
of rheumatic diseases.

Platelet–neutrophil interactions
Although platelets can interact with numerous different cells44, their 
interactions with neutrophils are particularly frequent and biologically 
important, and have an important role in both physiological responses 
and pathological processes64. Platelet–neutrophil interactions occur 
at the earliest stages of platelet formation. Within the bone marrow, 
megakaryocytes reside in the perisinusoidal space, which serves as 
both the exit and the entry point for neutrophils entering or returning 
from the bloodstream65. Neutrophils returning from the blood to the 
bone marrow will migrate towards bone marrow megakaryocytes in a 
CXCR4–CXCL12-dependent manner and can ‘pluck’ proplatelets, which 
accelerates their shedding, a physiological process that, under condi-
tions such as myocardial infarction, might exacerbate the production 
of pro-thrombotic immature platelets66.

Moreover, live neutrophils can enter the cytoplasm of bone mar-
row megakaryocytes via a process called emperipolesis, which has 
emerged as a key contributor to platelet heterogeneity. This interac-
tion activates megakaryocytes, prompting increased platelet produc-
tion. Emperipolesis enables neutrophils to enter megakaryocytes in 
membrane-bound vesicles before forming membrane continuity with 
the demarcation membrane system, which facilitates the transfer of 
neutrophil-derived entire membrane domains and proteins to nas-
cent platelets67. These so-called ‘hybrid platelets’ exhibit increased 
phosphatidylserine exposure, a feature linked to procoagulant and 
inflammatory platelet phenotypes. Emperipolesis occurs under basal 
conditions but is amplified considerably during haematopoietic stress 
and inflammatory diseases, such as myeloproliferative neoplasms 
and grey platelet syndrome67–69. Notably, inflammatory neutrophils 
that evade clearance by phagocytes can invade megakaryocytes via 
emperipolesis, promoting both platelet production and bone marrow 
fibrosis — an event implicated in the pathogenesis of myeloproliferative 
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neoplasms, including myelofibrosis70. The potential for megakaryo-
cytes to selectively engage activated neutrophils based on integrin 
signalling raises the possibility that inflammatory conditions could 
favour the generation of hyperreactive platelets, which supports the 
concept that ‘angry neutrophils make angry platelets’67. Further inves-
tigation into the molecular cargo exchanged during emperipolesis, and 
the subsequent effects on platelet function and immune signalling, 
might reveal novel pathways linking bone marrow inflammation to 
peripheral vascular pathology.

Outside the confines of the bone marrow, mature activated plate-
lets and neutrophils often converge at sites of haemorrhage, vessel 
wall injuries, thrombotic occurrences and instances in which intact 
vessel walls undergo leukocyte trans-endothelial cell migration and 
extravasation, as previously discussed. The co-localization of neu-
trophils and platelets is not haphazard but rather orchestrated in 
response to ‘find-me’ signals. One potential source of these signals is 
platelet serotonin, which is released from dense granules. The seroto-
nin metabolite, 5-hydroxyindoleacetic acid, engages the neutrophil G 
protein-coupled receptor (GPCR), GPR35, promoting adhesion to acti-
vated lining endothelial cells and facilitating neutrophil recruitment 
to inflamed tissues71. GPR35 expression has a pivotal role in mediating 
the interactions between transmigrating neutrophils and platelets71.

Multiple signals within inflamed vessels culminate in platelet– 
leukocyte adhesion that sustains neutrophil activation and extravasa-
tion. The best characterized molecular interaction involves P-selectin 
on the platelet surface binding to the constitutively expressed PSGL-1 
receptor on neutrophils and monocytes (Fig. 1). This initial tethering 
primes neutrophils, triggering intracellular reorganization and the 
redistribution of their granular contents. As a result, neutrophils begin 
to express bioactive molecules, such as myeloperoxidase and tissue fac-
tor, on their surface59,72–74, a process that facilitates their extravasation. 

Activated leukocytes also upregulate β2 integrins, which undergo 
conformational changes that increase their affinity for fibrinogen. 
Fibrinogen is frequently presented by activated platelet αIIbβ3 integ-
rins, which facilitates firm adhesion and promotes leukocyte–platelet 
interactions. These interactions lead to the formation of heterotypic 
platelet–leukocyte aggregates, which can be readily detected in 
circulating blood75,76.

These aggregates are characteristic of various inflammatory con-
ditions, such as SLE, APS, RA and other autoimmune diseases64,76–79. 
Besides serving as biomarkers of platelet activation80, heterotypic 
aggregates propagate inflammatory vascular damage. Their recruit-
ment to inflamed or damaged endothelium is guided by interac-
tions with neutrophils at lower shear rates, and platelet binding to 
vWF or exposed extracellular matrix constituents at higher shear 
rates81. Efforts to limit neutrophil–platelet interactions and aggregate 
formation have yielded promising results82.

The formation of heterotypic aggregates is just one of the pos-
sible outcomes of the interaction between neutrophils and activated 
platelets. Following adhesion, neutrophils that interact with platelets 
can either phagocytose them, sequestering them from the micro-
environment and quenching their thrombogenic and inflammatory 
potential8,83–85. Alternatively, platelets can promote the production 
of NETs by neutrophils45 (NETs are three-dimensional structures com-
posed of decondensed chromatin and microbicidal moieties such as 
histones and proteolytic enzymes). The factors that influence neu-
trophils to undergo NET generation over phagocytosis are only par-
tially understood, although a neutrophil metabolic state is probably 
involved86,87.

In a seminal study, platelet activation via TLR4 was shown to drive 
their adhesion to neutrophils, triggering subsequent neutrophil activa-
tion and the formation of NETs45. TLR4-dependent platelet–neutrophil 

Platelets activated by 
soluble agonists in the 
circulation express 
P-selection and HMGB1

Neutrophils tether to 
adherent platelets via 
P-selectin and HMGB1

Neutrophil

Subendothelial matrix
Site of injury

Platelet

P-selectin–PSGL-1 
interactions support 
the platelet–neutrophil 
heterotypic aggregates

Platelets adhere to the 
subendothelium and 
expose P-selectin and 
HMGB1

Endothelial cell

β3αllb HMGB1 PSGL-1P-selectin RAGEFibrinogen CD18 CD11 ADP, thromboxane
A2 and serotonin

Fig. 1 | Acute microvascular injury drives the early interaction between 
activated platelets and neutrophils. Activated platelets respond to 
subendothelial components or soluble signals (such as ADP, thromboxane A2 
and serotonin) by expressing P-selectin and high-mobility group box 1 (HMGB1) 
on their outer membrane. Extravasating neutrophils tether to platelets that 
adhere to the subendothelial matrix via the P-selectin–PSGL-1 axis, initiating 

firm adhesion through fibrinogen-mediated interactions between platelet 
αIIbβ3 integrin and the neutrophil CD11–CD18 receptor. Platelet HMGB1 triggers 
the activation of receptor for advanced glycation end products (RAGE) on 
neutrophils. These events promote neutrophil activation and migration into 
perivascular tissues. Additionally, activated circulating platelets can adhere to 
neutrophils, forming platelet–neutrophil aggregates.
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interactions were induced by signals present in the blood of patients 
with sepsis, resulting in the entrapment of bacteria by NETs within the 
vasculature, notably in the liver sinusoids and pulmonary capillaries, 
through mechanisms independent of P-selectin45.

NETs released in a regulated manner are probably protective 
and non-pathogenic. However, components of NETs can activate 
the coagulation system, which contributes to intravascular coagula-
tion in patients with sepsis regardless of the inciting microorganism 
involved88. Interactions between H4 histone in NETs, platelets and 
inorganic polyphosphates have an essential role in promoting coagu-
lation and immunothrombosis89,90. Strategies to target NETs in sepsis 
face inherent difficulties, as digesting NETs can release entrapped, 
potentially dangerous microbes into the systemic circulation. Inter-
estingly, factors released from platelet α-granules, such as CXCL4, 
have a protective role by stabilizing NETs, which enhances micro-
bial entrapment and limits the release of prothrombotic and cyto-
toxic degradation products — such as extracellular histones and DNA  
fragments — that can cause oxidative vascular damage91.

Platelet signals and immunothrombosis
Immunothrombosis refers to a physiological defence mechanism 
whereby platelets, neutrophils and the coagulation cascade coordi-
nate to form microthrombi that help to contain pathogens and limit 
systemic spread1. This process is tightly regulated and typically ben-
eficial, especially in the setting of infection or acute tissue damage; 
however, when persistent or dysregulated, immunothrombosis gives 
rise to thromboinflammation, a maladaptive state in which thrombosis 
and inflammation reinforce one another, resulting in vascular occlu-
sion, tissue injury and organ dysfunction92. Although this conceptual 
distinction is widely adopted, the boundary between protective and 
pathological outcomes is often difficult to define, particularly in 
rheumatic diseases, in which the same cellular and molecular media-
tors contribute to vascular repair and to maladaptive remodelling. 
For instance, thromboinflammatory responses might initially aid in 
restoring vascular integrity but later promote fibrosis, vasculopathy 
or chronic immune activation46. As such, both immunothrombosis and 
thromboinflammation should be viewed as dynamic processes whose 
roles, protective or pathogenic, depend heavily on context, duration 
and regulation. This complexity is particularly relevant in systemic 
autoimmune diseases, in which chronic inflammation continuously 
reshapes the vascular environment.

Mechanistically, the sequence of events underlying immuno-
thrombosis can be summarized as follows: initially, platelets are acti-
vated upon receiving microbial signals, such as those encountered 
during sepsis, or sterile signals, both of which act through pattern 
recognition receptors on platelets. Platelet activation can then be 
further amplified by fibrin-dependent assembly of autoantibodies 
and complement activation, which is often observed in autoimmune 
diseases63. Activated platelets undergo degranulation, releasing the 
contents of their α-granules, including P-selectin, which translocates 
to the plasma membrane. This event is crucial for the subsequent 
interaction between platelets and neutrophils, setting the stage for 
further immune cell recruitment and establishing the foundation for 
thrombus formation driven by immune cell interactions44,46,63 (Fig. 2).

In parallel, activated platelets release HMGB1, a key inflamma-
tory mediator and a prototypic damage-associated molecular pat-
tern. HMGB1 can be released in several forms: as a soluble entity, as a 
membrane-associated moiety or packed into extracellular vesicles7,93,94. 
HMGB1 amplifies the inflammatory response by promoting further 

platelet activation and enhancing the thrombotic response in the 
vasculature. It interacts with neutrophils, particularly those in direct 
contact with platelets, by binding to receptors such as receptor for 
advanced glycation end products (RAGE), triggering their activa-
tion and enhancing their inflammatory response93–96. Additionally, 
HMGB1+ platelet-derived extracellular vesicles can influence distant 
neutrophils, conveying signals locally and propagating the thrombotic 
cascade.

RAGE activation upon recognition of platelet HMGB1 initiates 
a cascade of intracellular signalling events leading to autophagy 
within neutrophils, which is essential for generating the ATP required 
to form NETs, which in turn contribute to the development of a 
thrombus89–91,95,97,98.

Platelet-derived extracellular vesicles are released during diverse 
forms of platelet activation and death99. Procoagulant platelets, 
marked by calcium-dependent phospholipid exposure, heightened 
P-selectin expression and robust extracellular vesicle shedding, are 
key contributors to immunothrombosis100. Extracellular vesicles gen-
erated under these conditions can carry distinct immunomodulatory 
cargo, but their functional diversity remains poorly defined. Moreover, 
platelet-derived extracellular vesicles include distinct subtypes such as 
microparticles (also known as microvesicles), which are generated by 
membrane budding, and exosomes that differ in size, biogenesis and 
cargo composition (including cytokines, nucleic acids, transcription 
factors, organelles and inflammatory mediators such as HMGB1). Their 
heterogeneity probably reflects the nature and strength of platelet 
activation signals. Notably, platelet-derived extracellular vesicles can 
traffic beyond the vascular compartment and deliver bioactive cargo 
to target tissues101.

Platelets express components of the inflammasome machinery, 
including NLRP3 and caspase-1, which can be activated by sterile inflam-
matory stimuli102,103. Once activated, caspase-1 cleaves pro-IL-1β, which 
enables platelets to release IL-1β and contribute to vascular inflam-
mation. Elucidating how platelet-induced inflammasome activation 
intersects with extracellular vesicle release, HMGB1 signalling and neu-
trophil priming might reveal novel therapeutic targets for modulating 
inflammation in autoimmune diseases.

Much of the current knowledge regarding platelet–neutrophil 
interactions stems from models that are unrelated to autoimmunity, 
in which immune complex formation and Fc receptor engagement are 
not predominant drivers of inflammation. Consequently, the extent 
to which autoantibodies modulate the requirement for specific adhe-
sion molecules, signalling pathways or the temporal orchestration 
of cellular crosstalk remains poorly defined. To advance mechanistic 
insights relevant to systemic autoimmune diseases, further investiga-
tion into how immunothrombosis is regulated within disease-specific 
microenvironments is warranted.

Platelets in rheumatic diseases
Across rheumatic diseases, platelets function as key modulators of 
immune and vascular dysfunction, linking localized injury to sys-
temic pathology. This section explores how platelet activation and 
crosstalk with neutrophils, endothelial cells and the innate immune 
system drive tissue damage, fibrosis and thromboinflammation in 
disease-specific contexts such as SSc, SLE, APS, vasculitis and RA. 
Although immunothrombosis serves as the unifying framework, each 
disease presents a distinct pathological scenario that is paradigmatic 
for understanding how platelets contribute to immune-mediated 
vascular injury.
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Systemic sclerosis
Early and extensive microvascular activation is a hallmark of SSc, a 
prototypic autoimmune and fibrotic disease, with continuous platelet 
activation accompanying microvascular injury104. Transcriptome profil-
ing has confirmed the association between platelet degranulation and 
activation with microvascular damage and neutrophil dysfunction105,106.

As a result of continuous and unrestricted platelet activation, extra-
cellular vesicles accumulate in the bloodstream, which is further ampli-
fied by the defective clearance of activated platelets88,107. Clearance of 
activated platelets by phagocytes involves an initial tethering phase, 
which is dependent on the P-selectin–PSGL-1 axis, followed by an inter-
nalization event that requires exposure of anionic phospholipids on the 

platelet plasma membrane83. Dysregulated expression and function 
of PSGL-1 in SSc has been described, and Psgl1−/− mice spontaneously 
develop key features of the human disease107,108.

Circulating platelets in patients with SSc express HMGB1 on their 
outer membranes, alongside P-selectin109,110. This activation profile 
contrasts with those observed under conditions in which platelet 
activation occurs acutely, such as in response to ongoing coronary 
syndromes or infectious agents111. Despite the prominent expression 
of activation markers, defects in PSGL-1 seem to compromise the recog-
nition of activated platelets, thereby limiting their clearance through 
interaction with professional phagocytes8,107.

Another consequence of defective early interactions between 
activated platelets and phagocytes is the underrepresentation of 
heterotypic platelet–leukocyte aggregates in patients with SSc. This 
deficiency reflects the limited recognition of P-selectin on platelet 
membranes by phagocytes, possibly owing to intense proteolysis 
within plasma membrane domains. Redistribution on the neutrophil 
membrane of bioactive proteolytic granular enzymes, as previously 
identified7,110, might reduce the expression of specific receptors.

Moreover, the unrestricted activity of transmigrating leukocytes 
in bystander perivascular tissues probably exacerbates vascular acti-
vation, perpetuating and amplifying the systemic vasculopathy char-
acteristic of SSc. Extracellular vesicles released by activated platelets 
and other vascular cells serve as a source of bioactive HMGB1, further 
accelerating and amplifying widespread microvascular damage and 
obliteration7,8,93. Persistent oxidative stress, a hallmark of SSc, might 
further enhance the inflammatory effects of HMGB1 on extracellular 
vesicles, which perpetuates microvascular injury110. Injecting extracel-
lular vesicles from patients with SSc into immunodeficient mice that are 
receptive to human cells and tissues mimics the neutrophil activation, 
NET formation, microvascular inflammation and lung fibrosis observed 
in patients with SSc. This evidence highlights platelet activation as a 
potential driver of disease progression in predisposed individuals, 
which suggests a mechanism whereby an initially localized microvascu-
lar injury propagates to systemic involvement of the microcirculation. 
Importantly, extracellular vesicles derived from the lungs of patients 
with SSc can induce experimental fibrosis when injected into the lungs 
of mice112, which highlights the considerable role of tissue-generated 
signals that are packaged in locally produced extracellular vesicles in 
shaping disease outcomes.

HMGB1, carried by platelet-derived extracellular vesicles, seems 
to mediate their pathogenic actions, as genetic and pharmacological 
approaches targeting vesicle-associated HMGB1 have specifically been 
shown to effectively abrogate the extracellular vesicle-induced micro-
vascular inflammation and lung fibrosis in experimental models7,8. 
These findings highlight the crucial role of platelet-derived HMGB1-
expressing extracellular vesicles in amplifying and perpetuating sys-
temic vascular damage in SSc (Fig. 3) and suggest that targeting HMGB1 
could be a promising therapeutic strategy for preventing the systemic 
spread of microvascular injury in this disease.

Although findings from the past decade suggest that platelets 
generated by megakaryocytes in different tissues, such as the bone 
marrow versus the lung, might have distinct functional properties101, 
this concept has not yet been extended to the extracellular vesicles 
that they release. Such an extension could be particularly relevant in 
SSc, in which inflammatory involvement of the lung is prominent27. 
Targeting the production, uptake or inflammatory cargo of specific 
extracellular vesicle subtypes, such as HMGB1 or mitochondrial com-
ponents, might, therefore, represent a promising therapeutic strategy 

Platelets and platelet-derived extracellular vesicles express HMGB1
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Fig. 2 | Platelet-derived HMGB1 promotes neutrophil NET formation. 
Recognition of high-mobility group box 1 (HMGB1), expressed by activated 
platelets or platelet-derived extracellular vesicles, via the receptor for advanced 
glycation end products (RAGE) triggers neutrophil metabolic reprogramming, 
autophagy and granule mobilization with the transfer of enzymes, such as 
myeloperoxidase, to the plasma membrane. This process ultimately promotes 
the formation of neutrophil extracellular traps (NETs), contributing to 
immunothrombosis.
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for limiting the progression of microvascular damage and systemic 
fibrosis in SSc.

Systemic lupus erythematosus
SLE is characterized by enhanced cardiovascular and atherothrombotic 
risks113. Platelets are constitutively activated in patients with SLE9,114,115 
and platelet transcriptome alterations correlate with clinical status116, 
which is consistent with the observation that platelets interact with 
neutrophils, T cells and endothelial cells in SLE115,117–120. Platelet-induced 
neutrophil activation is particularly important because the NETs 
that are released during this process serve as scaffolds for immune 
thrombi. NETs are enriched in bona fide nuclear antigens, which are 
essential for the activation of autoreactive B cells and T cells, fuelling 
the autoimmune process central to SLE pathogenesis117,121,122 (Table 2).

Unlike in SSc, platelet activation in SLE is associated with an 
increased presence of leukocytes adhering to platelets, which form 
circulating aggregates. Low-density neutrophils, a cell population 
responsible for high levels of NET generation, preferentially adhere to 
activated platelets117,118. This interaction seems to depend on platelet 
TLR7 and leads to enhanced generation of NETs, particularly in patients 
with active nephritis118.

In patients with active SLE, neutrophils exhibit reduced expression 
of PSGL-1 (ref. 119). Although PSGL-1 might have a less crucial role in SLE 
than in SSc, impaired interactions between PSGL-1-expressing phago-
cytes and P-selectin-expressing activated platelets could contribute to 
defective platelet clearance. Notably, defective clearance mechanisms 
are a well-known feature of SLE, particularly in the removal of apoptotic 
material and cellular debris. This impaired clearance might promote 
the persistence of activated platelets and an increased generation of 
platelet-derived extracellular vesicles, as observed in SSc8. Indeed, 
reduced PSGL-1 expression is associated with enhanced concentrations 
of both platelet extracellular vesicles and NET fragments in people with 

SLE119, and soluble PSGL-1 might represent an interesting biomarker in 
the clinic123.

T cells specific for bona fide cell-associated autoantigens have dual 
roles in SLE, both promoting and restraining immune-mediated tissue 
damage. The mechanisms that regulate their clonal expansion remain 
poorly understood124. Notably, activated P-selectin-positive platelets 
from patients with SLE preferentially interact with regulatory T cells, 
and P-selectin expression also seems to be crucial for the generation 
of anti-double-stranded DNA antibodies and the development of lupus 
nephritis120.

Platelets also interact with and activate endothelial cells in SLE, a 
phenomenon in which IL-1β released from platelets has a major role115. 
Other platelet-derived factors link platelet activation to core features 
of SLE pathogenesis, including the secretion of IFNα by plasmacytoid 
dendritic cells through CD40–CD40L interactions125. Among these 
factors, platelet LGALS3BP (galactoside-binding soluble 3-binding 
protein) has emerged as a marker of disease severity and lupus nephritis 
activity126. Importantly, type I interferons, key cytokines in SLE natu-
ral history, directly induce LGALS3BP transcription and translation 
in megakaryocytes126, further implicating the platelet lineage in the 
dysregulated immune response that drives SLE.

Dysregulation of type I interferons and aberrant neutrophil activa-
tion are central to the vascular damage observed in SLE. Type I inter-
ferons directly damage endothelial cells and prime leukocytes, which 
enhances their capacity to injure the vessel lining122. SLE neutrophils 
are highly sensitive to interferon signalling and are key drivers of NET 
formation, which further amplifies type I interferon production by 
activating plasmacytoid dendritic cells127,128.

NETs serve as DNA scaffolds for AIM2-like receptors, a family 
of receptors that recognize double-stranded DNA and sustain inter-
feron signalling129. This interaction creates DNase-resistant nucleo-
protein structures that become immunogenic and promote sustained 
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Fig. 3 | Responses to vascular injury in healthy people and patients with 
systemic sclerosis. In healthy people (left, blue), platelet activation after 
vascular injury promotes haemostasis, vessel repair and resolution through 
P-selectin–PSGL-1-mediated clearance of activated platelets by phagocytes. 
In systemic sclerosis (SSc, right, red), impaired platelet clearance leads to 

the persistence of activated platelets and the continuous release of HMGB1+ 
extracellular vesicles. This process perpetuates neutrophil activation, neutrophil 
extracellular trap (NET) formation, endothelial damage and immunothrombosis, 
which contributes to vasculopathy and fibrosis. The resulting feedback loop 
sustains microvascular disease and platelet activation.
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interferon signalling130,131. HMGB1 also has roles both as an amplifier of 
neutrophil activation and as a facilitator of neutrophil survival through 
autophagy7, and also acts as a natural adjuvant when associated with 
DNA fragments or neutrophil enzymes such as elastase132. HMGB1-
containing complexes can predict renal outcomes in patients with 
SLE, further emphasizing their importance in disease pathogenesis132.

Antiphospholipid syndrome
APS is characterized by thrombotic, non-thrombotic and obstetric 
complications driven by autoantibodies that recognize complexes of 
anionic phospholipids and protein cofactors, such as β2-glycoprotein I  
(β2-GPI), which become exposed on activated endothelial cells and 
platelets, particularly in settings of vascular injury or cell activation. 
These interactions lead to immune complex formation and comple-
ment activation11 (Fig. 4). Importantly, in APS, immune complex forma-
tion typically occurs on the cell surface, where the binding of β2-GPI to 
anionic phospholipids induces conformational changes that expose 
neoepitopes for immune recognition11. This localized, surface-bound 
mechanism contrasts with SLE, in which immune complexes more 
commonly form freely in the circulation.

Neutrophils rapidly detect these events and respond by generat-
ing NETs, which further amplify platelet activation and contribute to 
ongoing vascular damage. NETs serve as structural components in 
arterial coronary thrombi and are key constituents of the large thrombi 
formed following anti-phospholipid antibodies administration in exper-
imental models of disease133. β2-GPI directly binds NETs134, potentially 

enhancing autoantibody binding and further propagating inflammation 
and thrombosis. Anti-NET antibodies, which are observed in patients 
with APS, impair NET degradation, prolonging their persistence and 
biological actions, and correlate with recurrent thrombosis78,135.

Genes related to complement activation, interferon pathways and 
NET generation are highly expressed in the kidneys of people with APS 
(who undergo chronic tissue remodelling), which suggests the persis-
tent involvement of these pathways even outside acute thrombotic 
events, as observed in APS nephropathy12. Additionally, decreased 
ectonucleotidase activity on neutrophils and platelets in APS has been 
linked to enhanced extracellular nucleotide activity, which facilitates 
interactions between platelets and neutrophils, further promoting 
immunothrombosis78.

Neutrophils in APS exhibit persistent activation and functional 
changes even outside critical disease phases, when thrombotic events 
are absent. This phenotype, associated with reduced ectonucleoti-
dase activity, includes a metabolic shift towards glycolysis (espe-
cially in patients with a history of microvascular disease), integrin 
transactivation and a lowered threshold for NET generation136,137.

Platelets exhibit persistent activation, with increased P-selectin 
expression, thromboxane A2 production, granule content release, 
extracellular vesicle generation and acquisition of a procoagulant 
phenotype77,78,138. Mechanistic studies in mouse models of APS 
underscore the critical role of platelet–neutrophil interactions in 
APS-associated thrombosis78,135.

Although APS is characterized by recurrent thrombosis, patients 
experience prolonged asymptomatic periods, suggesting the presence 
of mechanisms that terminate pathological immunothrombosis and 
restore vascular homeostasis. NET degradation, complement down-
regulation and other resolution processes might fail in catastrophic 
APS, leading to thrombotic microangiopathy, the primary pathological 
finding of this condition, which reflects multi-organ activation of the 
endothelium, platelets and neutrophils11.

Further investigation into the pathways that halt immunothrom-
bosis in APS might provide important insights into why some patients 
experience extended asymptomatic periods despite ongoing sero-
logical markers of disease. Identifying these regulatory mechanisms 
could help to prolong asymptomatic phases and reduce clinical 
complications.

Vasculitis
In addition to systemic autoimmune diseases characterized by micro-
vascular involvement, the interaction between platelets and neutro-
phils, which culminates in immunothrombosis, has a crucial role in 
vasculitis. Byproducts of NETs accumulate in the plasma of patients 
with ANCA-associated small-vessel vasculitis139, and this accumulation 
correlates with clinical severity. Additionally, the degradation of NETs — 
a mechanism that restricts their bioactivity — is impaired, and anti-NET 
antibodies have been described in people with ANCA-associated 
small-vessel vasculitis. The biological effects of NETs seems to be 
twofold: they might modulate the immunogenicity of specific neu-
trophil antigens in the context of vascular inflammation and necrotic 
damage, but they might amplify and sustain this process, which drives 
vascular injury140.

Platelets are activated in patients with ANCA-associated small-
vessel vasculitis and can directly trigger the generation of NETs through 
a mechanism involving the release of CXCL4 (ref. 141). The clinical 
relevance of this interaction, particularly in relation to small-vessel 
and organ involvement, such as the lungs and kidneys, warrants further 

Table 2 | Key platelet interactions in systemic lupus 
erythematosus

Cells that interact 
with platelets

Effects in SLE Refs.

Neutrophil Neutrophil–platelet interactions induce 
immunothrombosis via NET formation, which 
forms a scaffold for immune thrombi and is 
enriched in nuclear antigens that activate 
autoreactive B cells and T cells

116–119, 
127,128

Low-density 
neutrophils

Preferentially adhere to activated platelets 
via TLR7 on platelets, which enhances NET 
generation, especially in active nephritis

117,122

Regulatory T cells Interact with platelets via P-selectin, which 
weakens suppression of acquired immunity 
(such as T cells and B cells), favouring 
autoimmunity and promoting anti-dsDNA 
antibody production and nephritis

120,124

Endothelial cells Platelets activate endothelial cells and 
promote vascular damage in SLE, partly via 
IL-1β release by activated platelets

115

Plasmacytoid 
dendritic cells

Platelets interact with pDCs via CD40–CD40L, 
which stimulates IFNα production and amplifies 
immune dysregulation. Platelet-derived 
LGALS3BP, which is upregulated in SLE, 
is linked to increased interferon activity and 
disease severity

125,126

Monocytes and 
macrophages

Defective clearance of activated platelets 
by monocytes and macrophages leads to 
sustained platelet activation and accumulation 
of platelet-derived extracellular vesicles

8,119

dsDNA, double-stranded DNA; NET, neutrophil extracellular trap; pDCs, plasmacytoid 
dendritic cells; SLE, systemic lupus erythematosus; TLR7, Toll-like receptor 7.
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investigation. Notably, pharmacological inhibition of neutrophil cath-
epsin C, a key signal responsible for activating neutrophil serine pro-
teases, has proven effective in experimental models of ANCA-associated 
vasculitis142. This intervention not only suppresses NET production but 
also limits the clinical severity of the disease142. Intriguingly, similar 
strong evidence that links NET generation to neutrophil inflammatory 
priming, potentially triggered by activated platelets, has been observed 
in patients with large-vessel vasculitis, such as giant cell arteritis and 
Takayasu arteritis143,144. This is particularly notable given that these 
diseases lack the widespread microvascular inflammation or systemic 
endothelial activation typically required to support neutrophil priming 
and NET formation. Notably, the physical disruption of the vasa vasorum 
by infiltrating leukocytes, including neutrophils, has an important role 

in these diseases and might serve as a portal of entry for autoreactive 
lymphocytes that infiltrate the vessel wall and reach the adventitia145. 
Indeed, neutrophils are consistently present in the temporal arteries of 
patients with giant cell arteritis, comprising a considerable proportion 
of total infiltrating cells throughout the arterial wall. However, NETs are 
only observed in the adventitial regions adjacent to the vasa vasorum, 
sites where neutrophils might still interact productively with other 
blood constituents, particularly platelets146.

Rheumatoid arthritis
Other biological fluids apart from blood can provide an environment 
that sustains the productive interaction between platelets and neu-
trophils. A notable example is in RA, in which synovial remodelling 
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Fig. 4 | Mechanisms that link platelet activation and immunothrombosis in 
antiphospholipid syndrome. In antiphospholipid syndrome (APS), platelet 
activation induces degranulation, thromboxane A2 release and extracellular 
vesicle generation. Phosphatidylserine on platelet surfaces serves as a scaffold 
for β2-glycoprotein I (β2-GPI) binding, enabling recognition by anti-β2-GPI 
autoantibodies and subsequent complement activation. Neutrophils, which are 

hyperactivated and metabolically reliant on glycolysis, form aggregates with 
platelets and generate neutrophil extracellular traps (NETs). These interactions 
drive acute immunothrombosis and chronically sustain microvascular 
injury. HMGB1, high-mobility group box 1; RAGE, receptor for advanced glycation 
end products.
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drives the disease process. Neutrophil accumulation within the syno-
vial fluid generates reactive oxygen species, the release of proteases 
and NET production, all of which contribute to the establishment and 
maintenance of the synovial pannus147.

Importantly, the stimuli that promote the initial activation of neu-
trophils in the synovium are still poorly understood. The early role of 
platelets in the RA synovium, which is reviewed elsewhere148, has been 
known for several years. In a seminal study, the authors traced bioactive 
platelet-derived extracellular vesicles in RA joints and found that platelets 
can recognize collagen moieties via glycoprotein VI, which subsequently 
triggers platelet activation and extracellular vesicle generation149. Intrigu-
ingly, platelets seem to be directly responsible for the permeability of 
the synovial vessels, which might facilitate the establishment of the 
synovial pannus150 and the selective access of platelet-derived extracel-
lular vesicles, but not extracellular vesicles from activated leukocytes, 
to the lymphatic circulation that drains the synovial tissue151.

Given the evidence that platelet–neutrophil interactions promote 
NET formation, it is tempting to speculate that platelet activation, 
elicited in response to the recognition of collagen moieties, causes 
localized immunothrombosis within the rheumatoid joint, eventually 
leading to NET generation.

In addition to contributing to important features of RA, such as  
joint damage, osteoclast activation and synovial angiogenesis152, 
NETs provide an important source of post-translationally modified 
chromatin, including both citrullinated and carbamylated histones. 
These modifications render NETs a preferential substrate for the 
generation of autoantibodies. Anti-citrullinated protein antibodies 
(ACPAs) are a hallmark of RA and are associated with disease sever-
ity, whereas aberrant immune responses to carbamylated antigens 
in RA have been linked to osteoclast activation and erosive bone  
damage153.

Platelets express the molecular machinery required for protein 
translational and post-translational modifications, including the key 
enzyme, PAD4 (ref. 154). Thus, platelet proteins undergo citrullination, 
and can thus be recognized by ACPAs from RA sera and synovial fluids, 
leading to further platelet activation154. Conversely, the expansion and 
accumulation of subsets of neutrophils in the peripheral blood that are 
prone to generating NETs seem to be a consistent feature of RA flares. 
These ‘rogue’ neutrophils might be recruited in response to endog-
enous alarmins, and potentially release NETs that promote immuno-
thrombosis through interactions with platelets via TLR4-mediated 
signalling155.

Further investigation is needed to determine whether platelet- 
induced neutrophil activation that leads to immunothrombosis spe-
cifically interferes with physiological inhibitory mechanisms — such as 
neutrophil clearance, DNase-mediated NET degradation, complement 
regulation or anti-thrombotic signalling — and to explore whether 
overlapping regulatory pathways help to limit the potential threats to 
organismal homeostasis associated with this process.

Immunothrombosis as a therapeutic target in 
rheumatic diseases
Immunothrombosis is a consistent feature in persistent, self-sustaining 
rheumatic diseases and has a crucial role not only in the heightened 
cardiovascular risk associated with these conditions but also in tissue 
remodelling and organ damage. Targeting immunothrombosis might 
therefore improve therapeutic strategies for many rheumatic diseases.

Numerous efforts aimed at targeting immunothrombosis in 
rheumatic diseases are ongoing (Box 1), including the assessment 
of antiplatelet strategies beyond cardiovascular risk management. 
For example, platelet–leukocyte interactions and IFNα-induced 
gene expression are elevated in megakaryocytes and platelets in 
SLE, and P2Y12 inhibition (a platelet-inhibiting therapy) alone is suf-
ficient to normalize these alterations156. The central role of IFNα in 
SLE pathogenesis highlights the therapeutic potential of targeting 
the megakaryocyte–platelet axis in systemic autoimmune diseases 
such as SLE156.

A clinical trial evaluating the potential efficacy of clopidogrel, 
a P2Y12 inhibitor commonly used as an antiplatelet agent to prevent 
arterial thrombosis, in modifying the natural history of SSc is cur-
rently ongoing (NCT05098704). Furthermore, the addition of ticagre-
lor, another P2Y12 inhibitor that also inhibits adenosine reuptake, to 
methotrexate therapy has shown increased benefits in patients with 
severe RA compared with methotrexate alone157, an effect that could 
be caused by the dual action of this inhibitor. These mechanisms can 

Box 1 | Targeting immunothrombosis  
in rheumatic diseases
 

Antiplatelet strategies beyond cardiovascular risk 
management

	• P2Y12 inhibitors (such as clopidogrel and ticagrelor) reduce 
platelet–leukocyte interactions and IFNα signalling, highlighting 
platelet activation as a driver of systemic lupus erythematosus 
progression.

	• Ongoing clinical trials are investigating the potential of 
clopidogrel in systemic sclerosis (NCT05098704).

	• The addition of ticagrelor to methotrexate is effective in severe 
rheumatoid arthritis.

Inhibition of platelet-driven neutrophil activation
	• Targeting P-selectin and its ligand (using agents such as 
crizanlizumab) and high-mobility group box 1 (HMGB1) blockers 
to prevent neutrophil extracellular trap (NET) formation.

Modulation of neutrophil function and NET formation
	• Low-molecular-weight heparin reduces NET formation by 
interfering with neutrophil autophagy.

	• Modulating neutrophil reactive oxygen species production and 
PAD4 activity might further reduce NET generation.

NET dismantling
	• Heparin and DNases actively degrade existing NETs.

Coagulation modulation and factor X inhibition
	• Factor Xa inhibitors show coagulation-independent benefits, 
attenuating immunothrombosis and protecting tissues via 
regulation of platelet granule release and modulation of 
neutrophil reactivity during maturation.

Targeting downstream NET pathways
	• Strategies focusing on complement activation and cytokine 
modulation to mitigate immunothrombosis.

	• IL-6 receptor inhibition (such as tocilizumab) has shown promise 
in reducing NET-mediated damage.
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be difficult to disentangle, as adenosine also acts as a platelet agonist 
under certain conditions.

Agents that selectively inhibit platelet-driven neutrophil activa-
tion, including those that target P-selectin (such as crizanlizumab) or 
block HMGB1, might prevent NET generation. Moreover, therapies 
that modulate neutrophil metabolism, such as low-molecular weight 
heparin, can reduce NET formation158. Modulating the generation of 
neutrophil reactive oxygen species and key enzymes involved in NET 
formation, such as PAD4, might also interfere with NET production. 
Notably, PAD4 inhibitors show promise for reducing the generation of 
extracellular traps from other cells, such as eosinophils158, whereas both 
heparin and DNases can actively dismantle existing NETs159. Additional 
approaches include factor X inhibition and strategies targeting down-
stream pathways activated by NETs, such as complement activation 
and cytokine release12,160–162. Evidence from a 2025 study indicates a 
coagulation-independent role of chronic factor Xa inhibition160, which 
attenuates immunothrombosis and protects tissues by influencing plate-
let expression of molecules that control α-granule and dense granule 
release and by modulating the reactivity of maturing neutrophils160,161.

Results from the ASSAIL-MI study emphasize the potential of 
reducing neutrophil activation and NET formation as a key mecha-
nism underlying the improvement of myocardial salvage in patients 
with ST-segment elevation myocardial infarction (STEMI) through 
IL-6 receptor inhibition with tocilizumab162. In this condition, NET 
generation has a crucial role in determining the clinical outcome of 
the vascular event93.

Although promising results have been obtained thus far — 
both preclinically and clinically — using these strategies as single 

interventions, combining therapeutic approaches in diseases in which 
immunothrombosis has a role might lead to better outcomes. Such 
combinations could not only reduce thromboembolic risks but also 
exert broader beneficial effects, such as limiting tissue remodelling 
and potentially preventing organ damage in patients with rheumatic 
diseases; however, careful consideration is needed when using com-
bination treatments, as they might synergistically increase the likeli-
hood of adverse effects. These risks could range from an elevated 
risk of bleeding, particularly when anticoagulants and antiplatelet 
agents are used together, to increased susceptibility to infections when 
immunosuppressive agents are involved. Striking the right balance 
between efficacy and safety is crucial for the optimization of combina-
tion therapies for immunothrombosis, ensuring maximal therapeutic 
benefit while minimizing complications.

Future directions
In this Review, we have explored the relationship between platelet 
activation and systemic rheumatic diseases. Immunothrombosis, a 
specialized form of thrombosis, is an essential physiological response 
to infections and tissue injury; however, when dysregulated, this pro-
cess can contribute to microvascular injury and maladaptive tissue 
remodelling. Platelets, as guardians of vascular integrity, interact with 
immune cells, notably neutrophils, amplifying inflammatory cascades 
that promote thrombosis and tissue damage.

In systemic autoimmune diseases, persistent platelet activation 
caused by different events amplifies vascular injury and sustains auto-
immunity. Platelet-derived extracellular vesicles might have an essen-
tial role in transforming local injuries in self-maintaining conditions to 

Glossary

α-granules
Platelet granules that contain 
haemostatic proteins (such as 
fibrinogen and von Willebrand Factor), 
growth factors, angiogenic signals 
and adhesion molecules (such as 
P-selectin).

αIIbβ3 integrin
Also known as GPIIb/GPIIIa. Mediates 
platelet aggregation by binding 
fibrinogen and contributing to clot 
formation.

Dense granules
Store small molecules such as ADP, 
ATP, serotonin and calcium ions, which 
contribute to platelet aggregation and 
activation.

Emperipolesis
A cellular process in which one 
living cell (such as a neutrophil) actively 
enters and resides within another cell 
(such as a megakaryocyte) without 
being destroyed. In the context of 
haematopoiesis, emperipolesis 
contributes to platelet heterogeneity 
by enabling the transfer of membrane 
components from neutrophils to 
developing platelets.

GPIb–IX–V complex
A mechanoreceptor that interacts 
with von Willebrand Factor on the 
subendothelial matrix during platelet 
adhesion.

High-mobility group box 1
(HMGB1). A damage-associated 
molecular pattern released from 
platelets that amplifies inflammation 
and neutrophil activation in 
immunothrombosis.

Immunothrombosis
A physiological process in which 
components of the innate immune 
system and coagulation system, 
including platelets and neutrophils, 
cooperate to form intravascular 
microthrombi, which help to 
contain pathogens and limit their 
systemic spread.

Iterative fission events
A stepwise process by which 
megakaryocytes produce platelets, 
involving the repeated extension 
and fragmentation of proplatelet 
projections into the bloodstream to 
generate mature platelets.

ST-segment elevation 
myocardial infarction
(STEMI). A type of acute myocardial 
infarction characterized by 
persistent ST-segment elevation 
on electrocardiography, indicating 
complete or prolonged occlusion of a 
coronary artery.

Thrombocytopoiesis
The biological process by which 
platelets are produced from 
megakaryocytes, primarily in the bone 
marrow but also in other tissues such 
as the spleen and lungs during stress or 
inflammation.

Thromboinflammation
A pathological state that results 
from dysregulated or excessive 
immunothrombosis, in which 
inflammation and thrombosis amplify 
one another, leading to tissue damage, 
vascular dysfunction and organ injury.

Thromboxane A2
Promotes platelet activation, 
aggregation and vasoconstriction.

Von Willebrand factor
(vWF). Binds GPIb to mediate platelet 
adhesion under shear stress.
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systemically activate the microcirculation and circulating leukocytes. 
One of the most striking advances in the past 10 years has been the 
recognition of heterogeneity within megakaryocytes and their derived 
platelets, suggesting that platelet subpopulations might differentially 
contribute to disease pathogenesis; however, direct evidence linking 
this heterogeneity to specific disease mechanisms in rheumatic condi-
tions is lacking. Understanding how platelets contribute to both the 
initiation and resolution of immunothrombosis could lead to novel 
therapeutic approaches that balance immune protection with the 
prevention of pathological thrombosis. At the same time, it is important 
to consider that platelets also contribute to tissue repair and vascular 
homeostasis, and their complete inhibition might inadvertently impair 
these protective functions.

The latest research underscores the importance of platelet–
leukocyte interactions, particularly through the P-selectin–PSGL-1 
axis, and the role of platelet HMGB1 and NET constituents in driving the 
immune-thrombotic response. Notably, targeted therapies have shown 
promise in modulating these pathways, offering potential strategies to 
mitigate platelet-mediated inflammation. However, much remains to 
be explored in terms of the molecular mechanisms underlying these 
processes, especially in the context of chronic human inflammation 
and immune dysregulation. The interplay between platelet activa-
tion and the immune system in the context of immunothrombosis 
raises several questions regarding the bidirectional influences that 
exacerbate rheumatic diseases. How platelet-mediated signalling 
cascades modulate immune cell recruitment and activation — and how 
chronic inflammation alters platelet function — remains incompletely 
understood. Further studies are needed to elucidate these dynamics, 
particularly in the context of disease-specific microenvironments such 
as the inflamed synovium in RA or damaged microvasculature in SSc.

Although much of the existing literature on platelet–neutrophil 
interactions in inflammation stems from research outside the specific 
context of autoantibody-driven diseases, the role of Fc receptors in 
neutrophil and platelet activation is well documented, particularly 
in autoimmunity121. Fc receptors, especially in autoantibody-driven 
diseases, contribute considerably to platelet activation and inflamma-
tory responses44; however, platelets from mice lack Fc receptors, which 
limits the translatability of many findings from mouse models to human 
autoimmunity. Future research should address this gap and focus on 
identifying biomarkers for early detection and monitoring of platelet 
activation in autoimmune diseases, with an emphasis on extracellular 
vesicles, HMGB1 and other molecules implicated in the regulation of 
the immune response. Understanding how platelets contribute to 
both the initiation and resolution of immunothrombosis could lead 
to novel therapeutic approaches that balance immune protection 
with the prevention of pathological thrombosis. Furthermore, inves-
tigating the potential for personalized treatment strategies based on 
platelet activation profiles could enhance the management of systemic  
rheumatic diseases and related thrombotic complications.

Conclusions
Platelet activation is a double-edged sword in immunothrombosis, fuel-
ling thrombosis and inflammation at the core of autoimmune diseases. 
Beyond driving cardiovascular risk, dysregulated immunothrombosis 
sustains chronic inflammation, vascular damage and fibrosis, reveal-
ing an intricate interplay between platelet hyperactivity, neutrophil 
reprogramming and NET generation. These mechanisms offer a unique 
lens for dissecting how immune dysfunction translates into progressive 
tissue injury.

Therapeutic intervention is no longer a question of if but how to 
best disrupt this pathogenic loop. Numerous promising therapeu-
tic strategies are under investigation, including P2Y12 inhibitors, 
P-selectin inhibitors, HMGB1 blockers, low-molecular-weight heparin, 
PAD4 inhibitors and cytokine and complement inhibition; however, the 
challenge of targeting immunothrombosis without tipping the balance 
towards excessive bleeding or infection remains.

A paradigm shift is underway; targeting immunothrombosis is no 
longer just about reducing thromboembolic risk, it is about halting 
autoimmune-driven organ damage. The future of rheumatic disease 
management lies in striking this delicate equilibrium, unlocking novel 
strategies for disease modification and prevention.

Published online: 7 July 2025
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Abstract

Initial success with B cell-targeted chimeric antigen receptor (CAR) 
T cells for the treatment of systemic lupus erythematosus and other 
rheumatic diseases has generated enthusiasm for the broad application 
of this technology outside of the field of oncology. Paediatric patients 
with severe rheumatic diseases require lifelong therapy with a 
substantial toxicity burden and a high cost of care. Paradigm-shifting 
treatments, including CAR T cells, are desperately needed. Although 
CAR T cell therapy shows promise for paediatric rheumatic diseases, 
there are unique aspects of care compared with adults, which require 
careful consideration and expertise. In response, we established 
the Integrated Multidisciplinary Paediatric Autoimmunity and Cell 
Therapy (IMPACT) working group, comprising international experts 
in the fields of paediatric rheumatology, oncology and cellular 
therapy, immunology and nephrology, to address the challenges 
of introducing cell therapies to patients with paediatric-onset 
autoimmune diseases. Given the possible benefits, we advocate for the 
study of CAR T cells in paediatric patients with rheumatic diseases who 
carry a lifelong risk of morbidity and mortality from chronic illness 
and medication toxicity. As this patient population is relatively small, 
consensus around definitions of success, robust study of predictors of 
response and uniform assessment and reporting of toxicities are critical 
to advancing the field.
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rapidly progressing lupus nephritis requiring haemodialysis who 
achieved dialysis-free remission27,28. Similarly, a 12-year-old patient 
with JDM treated with CAR T cells showed major improvement in skin 
disease, normalization of muscle strength, resolution of MRI-detected 
myositis and improvement in calcinosis and was able to discontinue 
immunosuppressive medications29. Adverse effects in paediatric 
patients have mirrored adult patients, with only grade one CRS and 
ICANS reported27–29.

Although the use of CAR T cells in adults with rheumatic diseases 
has been reviewed in the literature, there is a paucity of focus on paedi-
atric patients25,30–32. We formed the Integrated Multidisciplinary Paedi-
atric Autoimmunity and Cell Therapy working group, bringing together 
international experts in paediatric rheumatology, oncology and cell 
therapy, immunology and nephrology to address the challenges of 
applying cell therapies in paediatric autoimmunity (Fig. 1). Here we 
review the rationale supporting CAR T cell therapy for B cell-mediated 
paediatric rheumatic diseases, focusing on pSLE, JDM, jSSc and pAAV. 
We describe the unique aspects of CAR T cell therapy implementation 
and clinical trial considerations in these paediatric populations (Box 1).

Unmet needs in paediatric rheumatic diseases
Paediatric patients with rheumatic diseases endure a lifelong burden 
of disease that is associated with progressive accrual of organ dam-
age, both from their disease and from long-term immunosuppres-
sive treatments and substantial associated toxicities. Compared with 
patients who experience disease onset during adulthood, children with 
rheumatic diseases often exhibit more severe disease presentations 
with high disease and treatment-related morbidity and mortality. For 
example, patients with pSLE have higher rates of nephritis, neuropsy-
chiatric disease and a higher standardized mortality ratio (relative 
to healthy individuals) than their adult-onset SLE counterparts, and 
patients with JDM suffer more frequent vasculopathic complications 
(such as intestinal perforation)33–39.

Frequent flares and chronic, refractory disease activity are well 
described in many patients with pSLE, JDM and pAAV, whereas jSSc 
often follows a progressive course despite intensive treatment40–44. 
Moreover, disease often persists into adulthood, with an ongoing risk 

Introduction
Chimeric antigen receptor (CAR) T cells are immune effector cells engi-
neered to express a synthetic receptor combining an antigen-binding 
extracellular domain with an intracellular T cell stimulatory domain. 
CAR T cell potency is best demonstrated by the success of CD19-
targeting CAR T cells (anti-CD19 CAR T cells) for adult B cell non-Hodgkin 
lymphoma and paediatric and adult B cell acute lymphoblastic leukae-
mia (ALL), whereby a single dose can achieve a complete response in 
up to 85% of patients1–4. The use of CAR T cells for adult and paediatric 
oncological indications thus far has led to a growing understanding 
of CAR T cell biology, efficacy and toxicities (such as cytokine release 
syndrome (CRS) and immune cell-associated neurotoxicity syndrome 
(ICANS)). B cell aplasia (also referred to as on-target, off-tumour B cell 
ablation) that results from anti-CD19 CAR T cells led to the hypothesis 
that this therapy could be leveraged to treat B cell-mediated rheu-
matic diseases, including systemic lupus erythematosus (SLE), idi-
opathic inflammatory myopathies, systemic sclerosis, anti-neutrophil 
cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and other 
B cell-mediated autoimmune diseases5–9.

With this rationale, the potential of this approach was first dem-
onstrated in 2019 with the effective treatment of a mouse model of 
lupus10,11. In 2024, the largest case series to date of anti-CD19 CAR T cell 
therapy for patients with rheumatic diseases was published. Müller 
et al.12 described the feasibility, safety and efficacy of anti-CD19 CAR 
T cells in patients with SLE (n = 8, five of whom had paediatric-onset 
disease), idiopathic inflammatory myopathies (n = 3) and systemic 
sclerosis (n = 4), all of whom were refractory to multiple lines of therapy, 
including 8 out of 15 individuals previously treated with rituximab12. 
All patients achieved disease remission or major clinical response per 
validated disease criteria, accompanied by B cell aplasia lasting an aver-
age of 4 months (median follow-up period 15 months, ranging from 4 to  
29 months). Importantly, all patients were able to completely discontinue 
immunosuppressive therapy at the time of the final follow-up.

Similar to their adult counterparts, the pathogenesis of 
paediatric-onset SLE (pSLE), juvenile dermatomyositis ( JDM), juvenile 
systemic sclerosis ( jSSc) and paediatric AAV (pAAV) are characterized 
by B cell dysfunction, suggesting that B cell-targeting CAR T cells might 
be an effective treatment strategy13–16. Although B cell depletion with 
the anti-CD20 monoclonal antibody, rituximab, can be effective in 
subsets of patients with paediatric rheumatic diseases, drug-free remis-
sion remains rare. In pSLE, various case series suggest that rituximab 
is primarily used for refractory lupus nephritis, with potential benefit 
for some patients that partially reflects the outcomes described in 
adults with lupus nephritis17,18. The Rituximab in Myositis trial, which 
included patients with JDM, did not meet its primary end point; how-
ever, post hoc analyses suggested that paediatric-onset disease and 
other patient factors (such as antibody subsets) might predict efficacy, 
and paediatric rheumatologists frequently report the use of rituximab 
for refractory JDM19–21. The efficacy of rituximab in pAAV seems to be 
similar to that of cyclophosphamide, which was expected based on 
studies of adult AAV22,23. As the depth and duration of B cell and plas-
mablast depletion have been shown to predict response to rituximab24, 
it is reasonable to hypothesize that a more potent ‘reset’ of the B cell 
compartment with anti-CD19 CAR T cells might be more effective25,26.

The first paediatric patients (12–15 years old) with rheumatic 
disease treated with anti-CD19 CAR T cells have now been reported 
with a similar safety profile and encouraging outcomes27–29. Consistent 
with the Müller study, all three paediatric patients with lupus achieved 
drug-free remission after CAR T cell therapy, including a patient with 
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Fig. 1 |  The Integrated Multidisciplinary Paediatric Autoimmunity and Cell 
Therapy (IMPACT) working group. The IMPACT working group currently 
comprises paediatric specialists in the fields of rheumatology, oncology and cell 
therapy, nephrology and immunology. In the future we plan to expand our group 
to include additional disease-related subspecialties (such as pulmonology) and 
patient and caregiver partners.
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of disease flare, progressive organ damage and medication-related 
adverse effects36,45–50. Onset of rheumatic diseases in childhood 
also increases the risk of irreversible organ damage compared with 
adult-onset disease; for example, patients with pSLE and pAAV are at a  
higher risk of end-stage renal disease, which is particularly relevant 
given the 5-year mortality rate of 22% in lupus nephritis with end-stage 
renal disease51. Similarly, patients with JDM develop calcinosis more 
frequently than their adult counterparts, and patients with jSSc develop 
relentless skin and/or lung fibrosis, severe gastrointestinal smooth 
muscle dysfunction and digital pulp ischaemia47,52–65.

Damage accrual also occurs from toxicity that is associated with 
aggressive immunosuppressive therapy, such as high-dose corticos-
teroids and cyclophosphamide, which have deleterious effects on 

growth, bone health, cardiometabolic health, fertility and protective 
immunity47,52. As patients accumulate increasingly severe medica-
tion toxicity, treatment intensity might need to be decreased, and 
long-term disease control becomes more difficult to maintain (Fig. 2). 
Therefore, early interventions that achieve drug-free remission in 
paediatric patients with rheumatic diseases would improve outcomes 
considerably and reduce associated morbidity and mortality.

These lifelong challenges have serious implications for quality 
of life and psychosocial well-being. Multiple studies have demon-
strated a high burden of mental health disorders in pSLE and JDM, 
with persistence of depression, anxiety and stress even during disease 
quiescence66–70. Compared with their unaffected counterparts, children 
with rheumatic diseases consistently exhibit diminished health-related 

Box 1 | Key considerations for CAR T cell therapy in paediatric rheumatic diseases
 

Unmet needs in paediatric rheumatic diseases
	• Paediatric-onset rheumatic diseases present with a more severe 
phenotype than adult-onset diseases.

	• Paediatric patients with rheumatic diseases experience high 
cumulative medication toxicity and drug-free remission is rare.

	• Psychosocial burdens of paediatric-onset rheumatic disease 
include mental health comorbidities and diminished 
health-related quality of life, which often persist even when 
disease is well controlled.

	• B cell-directed chimeric antigen receptor (CAR) T cell therapy has 
shown promise in adults with rheumatic diseases and is expected 
to provide similar efficacy in paediatric-onset rheumatic diseases 
including paediatric-onset systemic lupus erythematosus, juvenile 
systemic sclerosis and paediatric anti-neutrophil cytoplasmic 
antibodies (ANCA)-associated vasculitis.

Unique considerations for paediatric patients with  
rheumatic diseases

	• Delivery of CAR T cell therapy requires collaborative, 
multidisciplinary teams, including paediatric rheumatic 
disease-specific experts and immune effector cell therapy 
specialists.

	• Access to CAR T cell therapy might be challenging owing to the 
distance from experienced paediatric tertiary care centres.

	• As paediatric patients with rheumatic diseases might have a high 
genetic load and/or monogenic driver mutations that are associated 
with early-onset, severe phenotypes, the role of genetic moderators 
in CAR T cell therapeutic outcomes requires special attention.

	• Compared with adults, differences in T cell repertoire and humoral 
immunity in paediatric patients with rheumatic diseases could 
affect CAR T cell efficacy and short-term and long-term risk of 
infection related to B cell aplasia and hypogammaglobulinaemia.

	• Children and adolescents with rheumatic diseases receiving 
CAR T cells require tailored vaccination strategies that account 
for pretreatment immunization status as well as post-treatment 
seroprotective status and immune reconstitution.

	• Safety assessment of CAR T cell therapy in paediatric patients 
with rheumatic disease should consider fertility preservation and 
related concerns, secondary malignancy risk, infectious risk and 
disease-specific organ toxicity.

Clinical trial considerations
	• International consensus on paediatric rheumatic diseases 
response criteria, clinical trial endpoints and desired time to 
achievement of response are needed to ensure the comparability 
of CAR T cell studies.

	• Engaging paediatric patients with rheumatic diseases and 
their caregivers to define and select clinical endpoints 
and patient-reported outcomes will enhance feasibility, 
meaningfulness and the effect of CAR T cell therapy clinical trials.

	• Paediatric-specific studies of immunobiology correlatives (such as  
final CAR T cell product characteristics, CAR T cell dose and cellular  
kinetics) are needed to identify predictors of safety and efficacy.

	• Incidence and predictors of paediatric rheumatic disease flares 
after CAR T cell therapy, and the role of CAR T cell redosing 
warrant further study.

	• Uniform assessment, grading and reporting of CAR T cell  
toxicities such as cytokine release syndrome, immune 
effector cell-associated neurotoxicity syndrome, immune  
effector cell-associated haematotoxicity and immune effector  
cell-associated haemophagocytic lymphohistiocytosis- 
like syndrome should be adopted, based on findings from 
paediatric oncology, adult oncology and rheumatology 
populations.

Regulatory considerations
	• The risk–benefit assessment of CAR T cell therapy in 
paediatric patients with rheumatic diseases should include 
the long-term morbidity and mortality associated with chronic 
organ damage and cumulative toxicity from standard-of-care 
immunosuppressive regimens.

	• Given the high unmet needs of paediatric patients with rheumatic 
diseases, early inclusion of this population in CAR T cell therapy 
trials is warranted (such as adaptive designs with sequential 
enrolment of adolescents followed by younger patients).

	• Extrapolation of efficacy and safety data from adult rheumatic 
disease CAR T cell trials warrants consideration given known 
similarities of adult reference and paediatric target populations.

	• Ongoing pharmacosurveillance and patient safety programmes 
will be needed to ensure the identification of emergent or late 
toxicities in real-world settings.
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quality of life and global health status, attributable to the combined 
effects of active disease, organ damage and medication toxicities44,71–76. 
These factors are associated with worse academic and adult social role 
outcomes as determined by rates of employment, higher education, 
partnering and childbearing, which affect both the individual patient 
and broader society40,77–80. Additionally, paediatric-onset rheumatic dis-
eases are costly to treat, with intensive, complex care regimens unfold-
ing over a lifetime that lead to a high economic and financial burden 
for both the individual patient and the health system as a whole81,82.

Given the chronicity and severity of paediatric rheumatic dis-
eases, early intervention with paradigm-shifting treatments such as 
CAR T cell therapy might offer substantial benefits and prevent irre-
versible organ damage before it occurs. These therapies could be 
particularly beneficial for paediatric patients as achieving durable, drug- 
free remission might translate into a substantial increase in the number 
of quality-adjusted life years compared with adults. Emerging case 
reports describe patients with pSLE and JDM receiving anti-CD19 CAR 
T cell therapy with promising efficacy and tolerable safety, even in 
the setting of severe disease12,27,29. Although these early reports are 
encouraging, rigorously designed clinical trials are required to address 
the unique features of paediatric rheumatic disease.

Unique considerations of CAR T cell therapy in 
paediatric patients with rheumatic diseases
Although many guiding principles in CAR T cell therapy apply across 
different diseases and age groups, there are unique aspects of treating 
paediatric patients with rheumatic diseases that need to be considered 
for success. Implementation of CAR T cell programmes outside of 
oncology and understanding disease-specific factors that could affect 
CAR T cell safety and efficacy require close collaboration between 
disease experts.

CAR T cell therapy programme implementation and  
patient access
Institutional infrastructure and multidisciplinary collaboration are 
essential to ensure the safe delivery of CAR T cell products to patients 
with paediatric-onset rheumatic diseases. Delivery of cellular therapies 
has historically fallen under the umbrella of haematology, oncology and 
haematopoietic stem cell transplant programmes. The Foundation for 
the Accreditation of Cellular Therapy (FACT) established standards for 
the use of cellular therapy over 25 years ago and subsequently added 
standards to encompass immune effector cell products, including 
CAR T cells83. FACT-accredited programmes have integrated complex 
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Fig. 2 | Paediatric-onset systemic lupus erythematosus as an example of the 
burden of paediatric-onset rheumatic disease. Paediatric-onset rheumatic 
disease might be associated with earlier and more severe presentation in the setting 
of increased polygenic risk (that is, genetic load). During critical periods of growth, 
development and education, paediatric patients with rheumatic diseases experience 
more severe clinical features relative to adult-onset disease, shared and unique 

medication toxicities and associated psychosocial burdens that cause substantially 
worse health outcomes over the life course. Early intervention with chimeric 
antigen receptor T cell therapy could dramatically improve disease outcomes for a 
select population of paediatric patients with rheumatic diseases, but clinical trials 
are needed to assess efficacy and safety. aPL, antiphospholipid antibodies; AVN, 
avascular necrosis; NPSLE, neuropsychiatric systemic lupus erythematosus.
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team dynamics and care management coordination for interface with 
apheresis, cell therapy laboratories, manufacturing, clinical research 
and clinical groups with expertise in cell therapy. Regulatory report-
ing requirements for cell therapy products are extensive, with FACT 
providing oversight from the time of cell collection through delivery 
and long-term follow-up. Patients with paediatric rheumatic diseases 
will require evaluation and treatment by multidisciplinary teams that 
include disease-specific experts alongside immune effector cell therapy 
specialists, with clearly defined team member responsibilities mapped 
to phases of care, including long term follow up. Multidisciplinary teams 
are needed to ensure complementary expertise in identifying and man-
aging post-CAR T cell therapy toxicities, evaluating treatment efficacy 
using disease-appropriate endpoints, and assessing for and managing 
disease flares over time. In addition, the FDA currently recommends 
up to 15 years of dedicated long-term follow-up for patients receiving 
gene-modified cell therapy products to monitor for delayed adverse 
events84. As paediatric patients approach young adulthood, systematic 
approaches to ensure effective transitions to adult care providers will 
be needed for long-term follow-up after CAR T cell therapy.

Given the complexity of care and expertise required, CAR T cell 
therapy is generally administered at tertiary care centres, which might 
limit access to care for paediatric patients who often face difficul-
ties participating in clinical trials owing to workforce shortages and 
uneven geographic distribution of paediatric subspecialists85–87. Many 
paediatric patients and their families already travel long distances for 
both routine care and research studies; thus, CAR T cell therapy will 
be difficult to access for many paediatric patients and their families. 
Moreover, patients might be required to reside nearby for at least 
several weeks following CAR T cell administration for toxicity monitor-
ing, adding to the financial burden and psychosocial stress on patients 
and families. These burdens are disproportionately experienced by 
patients and families facing greater socioeconomic disadvantages88–90. 
Financial assistance and robust psychosocial support will be important 
facilitators of trial participation and post-approval access to CAR 
T cell therapy88,91–93. Ensuring robust insurance coverage of CAR T cell 
therapy for paediatric rheumatic disease indications will be essential, 
given published findings that differences in insurance type among 
patients with cancer are associated with the likelihood of receiving 
CAR T cell therapy and with subsequent clinical outcomes94–96. Given 
that non-biological factors (such as income) are already associated 
with differential outcomes in pSLE and JDM, efforts must be made 
towards ensuring broad access to CAR T cell therapy trials for all eligible 
patients82,97–100.

Potential genetic influences on CAR T cell efficacy in patients 
with paediatric rheumatic diseases
Although we expect considerable benefits of CAR T cell therapy in 
children with rheumatic disease, we predict that genetic factors might 
distinctly influence CAR T cell efficacy in certain paediatric popula-
tions. Adult-onset SLE is typically polygenic101, whereas >30 genes have 
been identified in monogenic pSLE via family studies, whole-exome 
sequencing and panel sequencing102–104. Monogenic pSLE manifests 
frequently in early childhood, with increased severity and treatment 
resistance compared with adult-onset SLE and paediatric patients with 
polygenic disease105. The prevalence of monogenic driver mutations 
in pSLE varies across studies, ranging from 7 to 30%106–108. In addition, 
across the SLE age spectrum, increasing genetic load correlates with 
earlier disease onset109. For this reason, although anti-CD19 CAR T cells 
might induce durable disease remission in patients with pSLE12,110,111, 

we hypothesize that genetic influences could affect the efficacy and 
durability of CAR T cell response in a small subset of patients. Beyond 
SLE, the paediatric-age onset of other autoimmune conditions, such 
as juvenile idiopathic arthritis, inflammatory bowel disease, autoim-
mune cytopenias and vasculitis, can present with signs of primary 
immune regulatory disorders (such as STING-associated vasculopathy 
with onset in infancy (SAVI), Aicardi–Goutières syndrome and SOCS1 
haploinsufficiency)112,113. Suggestive features of primary immunoregu-
latory disorders include very early onset disease, atypical patterns of 
multisystem autoimmunity and a strong family history. Depending on 
disease severity and whether the genetic drive for immune dysregula-
tion is confined to the haematopoietic compartment, haematopoietic 
stem cell transplantation could be considered an alternative therapy114. 
In the absence of a high suspicion for a primary immunoregulatory 
disorder, excluding patients from CAR T cell clinical trials owing to 
genetic testing results is not recommended, as patients with pathogenic 
variants in immune-related genes could still benefit. However, to better 
understand the potential modifying role of paediatric-specific genetic 
factors on CAR T cell efficacy and durability, it might be prudent to 
perform genetic sequencing as a correlative assessment. Evaluating 
the effect of genetic variants could ultimately facilitate refinement of 
CAR T cell therapy design and implementation and inform strategies 
to optimize long-term disease control.

The immune landscape and the potential effects on  
CAR T cell fitness
In the setting of a haematological malignancy, several studies have 
attempted to identify variables (including age-related variables) in the 
composition of the initial autologous CAR T cell product that might 
affect clinical response. These variables include the degree of T cell 
exhaustion and senescence, the T cell memory composition (with 
higher naive and stem cell-like memory T cells correlating with bet-
ter proliferative and antitumour capacity), the CD4:CD8 T cell ratio, 
the fraction of regulatory T cells and the T cell receptor repertoire 
diversity115–117. More generally, younger individuals have fewer senes-
cent cells, and one hypothesis for the higher response rate in paediatric 
B cell ALL versus adults >60 years of age with multiple myeloma to 
CAR T cell therapy is that CAR T cell products from older patients are 
less functional115. The importance of these product characteristics in 
autoimmunity is unknown, as, for example, long-term persistence of 
CAR T cells might not be a pre-requisite for a durable response.

In addition to age, T cell composition in the starting material for 
a CAR T cell product might vary based on the underlying rheumato-
logical disease, pre-leukapheresis immunosuppressive therapy and 
disease severity118. To circumvent concerns about product variabil-
ity and immune cell fitness of products derived from patients with 
autoimmunity, strategies for using allogeneic products from healthy 
donors are being considered, including the use of CAR T cells generated 
from virus-specific T cells (NCT06429800) and CAR natural killer cells 
(NCT06557265).

Other considerations are potential differences in how anti-CD19 
CAR T cell therapy affects humoral immunity in paediatric versus 
adult patients. Although anti-CD19 CAR T cells eliminate both naive 
and CD27+ memory B cells, long-lived CD19-negative plasma cells 
remain unaffected by this treatment. These plasma cells, which can 
persist for decades in bone marrow niches, represent the accumu-
lated immunological memory from previous pathogen exposures 
and vaccinations, a reservoir that is naturally smaller in children 
owing to fewer years of immune exposures. Biological differences in 
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humoral immunity between children and adults manifest clinically. 
Children experience higher rates of hypogammaglobulinaemia fol-
lowing anti-CD19 CAR T cell therapy compared with adults and con-
sequently require intravenous immunoglobulin replacement more 
frequently119. As hypogammaglobulinaemia increases susceptibility 
to infection, the use of anti-CD19 CAR T cells in paediatric autoim-
munity requires systematic monitoring of immunoglobulin levels 
coupled with timely and appropriate intravenous immunoglobulin 
replacement strategies.

Vaccination principles
Children and adolescents with rheumatic diseases who are being con-
sidered for CAR T therapy have often been treated with immunosup-
pressive drugs for years and, therefore, might not be up to date on 
age-appropriate immunizations. Moreover, depending on the age 
of presentation, patients might not have completed the full vaccina-
tion series, such as immunizations aimed at preventing the human 
papillomavirus or Neisseria meningitidis. Given that CAR T therapy is 
aimed at eliminating B cells, patients could be both more susceptible 
to vaccine-preventable illnesses and less likely to respond to vaccines 
immediately following CAR T therapy. Therefore, considering these 
unique factors when developing a vaccination strategy in children and 
adolescents with rheumatic diseases receiving CAR T cell therapy is 
important. Fortunately, immunogenicity data in patients treated with 
CAR T cell therapy for malignancy suggests that patients will prob-
ably retain vaccine seropositivity, even after achieving B cell aplasia, 
although these data are primarily derived from the evaluation of adult 
patients120–123. Notably, some CAR targets, such as B cell maturation 
antigen, might result in greater loss of seroprotection from previously 
administered vaccines than anti-CD19 CAR T cells124.

In addition to existing rheumatology immunization guidelines, 
which focus on non-cellular immunosuppressive therapies125, expert 
recommendations have been developed by the oncology community 
for children and adults receiving CAR T cell therapy123,126–129. Although 
these studies have not yet been replicated in paediatric rheumatol-
ogy patients receiving CAR T cells, the same infection prevention 
principles could apply. First, updating seasonal vaccines and the 
pneumococcal vaccine series is recommended for immunocom-
promised individuals prior to leukapheresis123,128–137. Fortunately, the 
evaluation period for CAR T cell therapy can be long enough to allow 
for a vaccination window. Second, routine inactivated vaccines that 
would be due in the months following CAR T cell therapy might need 
to be deferred until the immune system has reconstituted enough 
for the patient to respond to these vaccines. Expert opinion recom-
mends waiting at least 3 months from the start of CAR T cell therapy 
and ensuring that the CD19+ and CD4+ count are both ≥200 × 106/l 
before initiating routine immunizations123,126–128. Third, establishing 
routine monitoring of vaccine serologies after immune reconsti-
tution could be beneficial for assessing the degree of protection 
a patient has and, in circumstances where titres remain low, offer 
revaccination127. Finally, live attenuated vaccines might need to be 
deferred for a longer period given the potential risk of infection. In 
the oncology field, live vaccines are deferred for at least 6–12 months 
after CAR T cell treatment, with evidence of immune reconstitution, 
response to prior inactivated vaccines and discontinuation of immu-
noglobulin replacement being prerequisites for delivery123,126,127,138. 
Studies should be conducted to assess vaccine immunogenicity 
and determine optimal vaccination timing strategies for paediatric 
patients with rheumatic diseases receiving CAR T cell therapies, with 

consideration given to duration and intensity of immune suppression 
prior to CAR T cell administration.

Toxicity in children, adolescents and young adults
Adverse effects of immune effector cell therapies are well described in 
oncological indications and include early immune mediated toxicities 
(such as CRS, ICANS, immune effector cell-associated haemophago-
cytic lymphohistiocytosis-like syndrome) and delayed toxicities 
(such as immune effector cell-associated haematotoxicity, impaired 
immunity and B cell aplasia)139–143. Preclinical models and clinical stud-
ies have enhanced understanding of the biological mechanisms of 
these inflammatory toxicities and have allowed for improved predic-
tive models144, early intervention strategies145,146 and targeted treat-
ments such as tocilizumab141,147. As a result, current post-marketing 
real-world oncology data chronicle improvement in the toxicity profile 
of anti-CD19 CAR T cell therapy, with only 16% of paediatric patients 
with ALL developing severe CRS compared with 48.1% in the first paedi-
atric clinical trial in ALL1. Importantly, the CAR T cell toxicity profile in 
paediatric patients has generally mirrored the adult experience and is 
more closely correlated with the underlying disease and CAR construct 
than patient age148–150. The most important predictor of severe inflam-
matory toxicities in oncology patients is CD19+ leukaemia cell burden 
at the time of infusion148,151,152. Therefore, inflammatory toxicities are 
expected to be milder in patients with rheumatic disease who have a 
physiological CD19+ target cell burden and not an expanded malignant 
population153. CAR T cell therapy also includes a risk of infection stem-
ming from antibody deficiency from B cell depletion, which could be 
accentuated in the setting of pre-existing lymphodepletion or mul-
tidrug immunosuppression154. The risk of CAR T cell therapy-related 
toxicity must be weighed against the substantial cumulative organ 
damage and psychosocial impact of living with serious paediatric-onset 
rheumatic disease155.

Despite initial evidence supporting the safety of CAR T cells, 
immune-mediated toxicities might present differently in patients 
with rheumatic disease who have preexisting immune dysregulation 
and organ dysfunction. Therefore, although we hypothesize that the 
benefits of CAR T cell therapy for appropriately selected patients will 
outweigh the risks, rigorous clinical trials are needed to assess efficacy 
and safety. Bedside-to-bench efforts to understand the full range of 
CAR T cell-mediated toxicity in oncology provides insight into the 
importance of a high index of suspicion for emergent toxicities, rigor-
ous reporting mechanisms and robust immunological and biological 
correlatives156. Emergent CAR T cell immune-mediated toxicities that 
are specific to autoimmunity are being reported. Local immune effec-
tor cell-associated toxicity syndrome (LICATS) is a term describing tran-
sient organ dysfunction in organs previously affected by autoimmunity 
(such as transient worsening of renal function in patients with lupus 
nephritis)157. Although it is hypothesized that this local, self-limited 
toxicity is related to CAR T cell destruction of tissue-resident B cells 
and immunological clearing, the pathophysiology is yet to be eluci-
dated. Understanding the immunological basis for this phenomenon 
is important to predict individual patient risk, tailor treatment strate-
gies and distinguish this syndrome from disease flares. The incidence 
and severity of LICATS might be different in paediatric patients with 
rheumatic disease, who have differences in disease organ involvement, 
severity, chronicity and histopathological features compared with 
adults35,38,41,43,158.

Heightened attention to a secondary risk of malignancy is reflected 
in the boxed warning issued by the FDA on all currently approved 
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CAR T cell therapies following separate reports of CAR-positive T cell 
malignancies159, indicating potential genotoxicity from the integration 
of the CAR transgene into proto-oncogenic sites. Follow-up reports 
investigating the incidence of these rare events have suggested that the 
rate of T cell malignancies is 0.1% of all CAR T cell adverse event reports160. 
Encouragingly, a 2023 global survey reviewing over 3,500 child, ado-
lescent and young adult patients treated with CAR T cells did not reveal 
any other known cases of CAR T cell-related malignancy and cautioned 
against amplifying concerns of excess risk given a preponderance of 
data supporting the long-term safety of CAR T therapies161. Neverthe-
less, thorough education and informed consent discussions should be 
prioritized for paediatric patients and their caregivers to ensure tailored 
assessment of individual patient risks and benefits162. These secondary 
malignancy risks, although minimal, might also be influenced by an indi-
vidual’s prior treatments, family history, genetic and environmental risks, 
and particularly important, the diagnosis meriting the use of CAR T cells.

Reproductive health concerns are particularly important for ado-
lescent and young adult patients with rheumatic diseases, as both the 
disease and cytotoxic and gonadotoxic treatments can impair fertility 
and increase the risk of adverse maternal and neonatal outcomes163. 
In oncology, long-lasting remission following CAR T cell therapy can 
potentially spare patients additional chemotherapy and stem cell 
transplant conditioning regimens that include gonadotoxic agents 
(such as cyclophosphamide and radiation)164. Similarly, drug-free 
remission following CAR T cell therapy in patients with paediatric 
rheumatic diseases might improve fertility and pregnancy outcomes 
by sparing exposure to gonadotoxic therapy, facilitating discontinu-
ation of teratogenic medications and extending periods of disease 
quiescence. However, CAR T cells can persist for decades post-infusion 
in oncology patients164,165, and their long-term effects on fertility remain 
unknown. Although it remains unclear if CAR T cells can cross the 
placental barrier and affect a developing fetus, reports of healthy 
live births following CAR T cell therapy describe favourable maternal 
and neonatal outcomes166. As prior cumulative exposure to gonado-
toxic drugs among patients is variable, the effect of lymphodeplet-
ing chemotherapy on fertility might not be uniform. There has been 
considerable progress in the field of oncofertility, with established 
clinical practice guidelines recommending early consultation for all 
patients receiving anticancer treatment167. Fertility counselling and 
preservation practices in other subspecialties, including paediatric 
rheumatology, are not as well-defined168,169. Therefore, incorporating 
routine consultations with fertility specialists prior to lymphodeplet-
ing chemotherapy and CAR T cell infusion, and insurance coverage of 
such, will be critical to CAR T cell therapy programmes for paediatric 
patients with rheumatic diseases.

Clinical trial considerations for CAR T cell therapy 
in paediatric rheumatic diseases
A complete understanding of the risk–benefit profile of CAR T cells in 
paediatric rheumatic diseases is dependent on robust and intentional 
clinical trial design. In this rare disease group, uniform definitions of suc-
cess and early engagement with regulatory groups will be critical to move 
the field forward. Using lessons learned from CAR T cell studies in oncol-
ogy provides a foundation for developing correlative studies to better 
understand the biology and determinants of toxicity and response.

Efficacy assessment
Tisagenlecleucel was the first FDA-approved cell therapy in paediatrics, 
with this approval based on the dramatic complete response rate and 

durability of remission for patients with B cell ALL170. Although the 
definition of a complete response in ALL is universal, variability in 
disease characteristics, treatment protocols, study endpoints and 
response definitions across paediatric rheumatic diseases could make 
comparison across interventional studies challenging171. Therefore, 
the use of internationally accepted measures of response and remis-
sion, such as the American College of Rheumatology (ACR) criteria for 
clinically relevant improvement in pSLE, the ACR–European Alliance 
of Associations for Rheumatology myositis response criteria for JDM 
and the international consensus-proposed response criteria for jSSc, 
should be implemented to facilitate standardized assessment across 
clinical trials172–174. Consensus guidelines will need to specify the use of 
existing core set measurements as well as additional efficacy assess-
ments that can characterize the effects of CAR T cells on the organs 
that are commonly affected in each condition. For example, skin dis-
ease is common in pSLE, JDM and jSSc, so consensus guidelines could 
specify the use of validated skin disease activity scoring tools, such 
as the Cutaneous Lupus Area and Severity Index (CLASI), Cutaneous 
Dermatomyositis Area and Severity Index (CDASI) and modified Rodnan 
Skin Score (mRSS), to provide additional detail on skin disease activity 
that might not be fully captured by existing core set of measurements 
for lupus, dermatomyositis and scleroderma. New response criteria that 
include ‘drug-free’ remission status within a prespecified time interval 
might also serve as a desirable end point, as this could represent the 
ultimate goal of CAR T cell therapy175,176. In addition to traditional effi-
cacy outcome measures, which can provide an early clinical signal, the 
durability of drug-free remission over extended periods of time will be 
a novel and important aspect of efficacy assessment that is likely to be 
of substantial importance in regulatory decision-making by oversight 
agencies (such as the FDA and EMA). Collaborative efforts to align on 
response definitions, disease assessment time points and expected 
durability of drug-free remission across clinical trials are critical for 
ensuring the comparability of CAR T cell studies.

Invasive procedures such as tissue biopsies or radiation-exposing 
imaging are often considered the ‘gold standard’ for assessing disease 
activity in paediatric rheumatic diseases (such as biopsy-obtained 
kidney samples for the assessment of lupus nephritis disease activity). 
The frequency of these evaluations should be carefully considered to 
balance risks and benefits in younger patient populations. In some 
disease-specific circumstances, these invasive or high-radiation assess-
ments might be justified to comprehensively assess response to CAR 
T cell therapy, such as with serial kidney biopsy for lupus nephritis or 
computed tomography for assessing interstitial lung disease.

Engagement of paediatric patients and caregivers as partners in 
defining and selecting appropriate clinical endpoints and outcome 
measures will be essential for ensuring that the most meaningful out-
comes of CAR T cell therapy are captured in trial designs177. Similarly, 
the use of patient-reported outcome measures will provide an insight 
into the effects of CAR T cell therapy on health-related quality of life, 
psychological well-being and social function178. Patient preference 
information studies should be conducted to determine the balance of 
short-term and long-term risks and benefits of CAR T cell therapy that 
would be acceptable to paediatric patients and their caregivers, as has 
been done for gene therapies and other novel therapeutics that have 
the potential to fundamentally alter disease trajectories179.

CAR T cell kinetics and determinants of response
Given that CAR T cells are a ‘living drug’ that expand in vivo after infu-
sion, the total cell exposure and consequently, clinical efficacy, is 
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influenced not only by the infused cell dose but also by patient- and 
product-specific factors such as disease burden4, CAR construct180 
and the immune phenotype of the final CAR T cell product3. Complete 
responses have been observed across a wide range of cell doses in B cell 
malignancies181. Although higher CAR T cell doses have generally been 
associated with improved outcomes in haematological malignancies, 
this relationship is not strictly linear and must be balanced by the risk 
of treatment-related toxicities182. Moreover, cellular kinetic (pharma-
cokinetics) principles gleaned from CAR T cell studies in malignant 
disease could differ in non-malignant settings and warrant special 
attention when studying the use of CAR T cell therapies in paediatric 
patients with rheumatic diseases.

Although some early-phase studies of CAR T cells in lupus use 
dose escalation to determine a recommended dose, others use a 
single weight-based or flat dose derived from therapeutic doses in 
malignant diseases. This approach might be sufficient to determine 
safety, but this ‘one size fits all’ strategy could lead to a knowledge gap 
in understanding optimal dosing in paediatric patients with rheumatic 
diseases. In contrast to malignant diseases, in which tumour burden 
can vary greatly, the target cell burden in paediatric rheumatic dis-
eases might be less variable and evaluating higher dosing strategies 
could be necessary to optimize clinical efficacy. In addition to cell 
dose, variability in cell source, final product characteristics and patient 
factors at the time of both leukapheresis and infusion should be pro-
spectively assessed to determine how these factors might influence 
or predict the initial efficacy and durability of drug-free remission. 
For example, as in patients with leukaemia with prior non-response 
to the B cell-targeting agent blinatumumab151, rheumatology patients 
with prior failure of rituximab might have lower response rates than 
patients who are rituximab naive. Preliminary findings in autoim-
munity appear to validate this principle, with lower peak CAR T cell 
expansion found in patients who have previously received rituximab 
than in those who had not12.

Finally, future studies should evaluate the efficacy of redosing 
CAR T cells in paediatric patients with rheumatic diseases who flare 
after the initial infusion. Although attempts at CAR T cell redosing 
in haematological malignancies have largely been unsuccessful183, 
the precise mechanisms underlying failure of a second CAR T cell 
infusion are unknown. Malignant cell-mediated suppression of CAR 
T cell function, target antigen loss or modulation and rejection of 
CAR T cells by the host immune system are probably all contributing 
factors to the limited success of secondary infusions183–185. Given that 
the underlying pathophysiology and immunological environment of 
malignancies and rheumatic diseases are different, determinants of 
CAR T cell failure are also probably unique. In addition, as the impor-
tance of CAR T cell persistence and prolonged B cell aplasia is not 
yet understood in autoimmunity, it is unclear if strategies to prevent 
immune-mediated rejection to enhance CAR T cell engraftment and 
persistence are necessary in this population. As the goal in this set-
ting might be a potent short-term immunological reset, comparing 
the immune milieu (including tissue-resident cells) between treat-
ment responders and non-responders will help to inform optimal 
dosing strategies and selection of therapeutic targets. For example, 
given that anti-CD19 CAR T cells might not effectively target long-lived 
plasma cells that contribute to autoantibody production186, alternative 
targets (such as B cell maturation antigen and B cell-activating fac-
tor receptor (BAFF-R)) or dual targeting might be needed to broadly 
eliminate autoantibody-producing cells and optimize treatment 
efficacy in paediatric patients with rheumatic diseases187,188.

Toxicity assessment
Systematic safety assessment should include known adverse events 
of interest in CAR T cell studies and incorporate consensus grading 
criteria for these toxicities, including CRS, ICANS189, immune effec-
tor cell-associated haemophagocytic  lymphohistiocytosis-like 
syndrome143, immune effector cell-associated haematotoxicity190, 
infectious complications and incidence of any secondary malignancies. 
Adverse outcomes and toxicities might require assessment via multiple 
measures, including the common terminology criteria for adverse 
events, disease-specific damage measures (such as the Systemic Lupus 
International Collaborating Clinics (SLICC)–ACR damage index and 
the myositis damage index), patient and physician global scores and 
patient- or parent-reported adverse event assessments191–193. Given 
that some manifestations of rheumatic disease might mimic or overlap 
with features of CAR T cell therapy toxicities (such as neuropsychiatric 
lupus versus ICANS and organ-specific disease flares versus LICATS), 
rigorous case definitions and adjudication processes for determining 
symptom attribution will be needed.

Baseline patient characteristics that predict the risk of post-CAR 
T cell therapy toxicity should be determined for each paediatric rheu-
matic disease population. Risk factors for acute toxicity already iden-
tified in oncology patients receiving CAR T therapy could be studied 
and validated in this population194. For example, one predictor of CAR 
T cell therapy toxicity in oncology patients is endothelial activation, 
which might be particularly prominent in patients with active pSLE, 
JDM, jSSc and pAAV, all of which prominently feature vasculopathy195. 
Patients with pre-existing antiphospholipid antibodies could be at a 
high risk of new thrombotic events after CAR T cell infusion, particu-
larly those who develop severe CRS196. Such predictors could be used 
to inform and standardize preventive strategies, such as the early use 
of immunomodulatory agents, which could minimize rates of severe 
CRS or other acute post-CAR T cell therapy toxicities145,146.

Finally, subacute and late toxicities will require continued atten-
tion in paediatric rheumatic disease populations. Given the known 
adverse effects of standard-of-care immunosuppressive treatments on 
growth, puberty, fertility and bone density, these parameters should 
be closely monitored. Monitoring vaccine-related antibody titres 
before and after infusion can guide revaccination strategies and help to 
elucidate strategies to reduce the risk of infection. Studies that assess 
the extent to which CAR T cell therapy either ameliorates or worsens 
neurocognitive dysfunction, which is a prevalent and debilitating 
feature of pSLE and potentially other paediatric rheumatic diseases, 
are needed197. Thorough documentation of additional adverse effects, 
including haematotoxicity and infectious complications, will enhance 
the understanding of the risk–benefit profile of CAR T cell therapy in 
paediatric patient populations with rheumatic diseases.

Regulatory considerations
Insights from the use of CAR T cell therapy in paediatric oncology pro-
vide a robust foundation of pharmacokinetic, efficacy and safety infor-
mation with which to inform clinical trial and regulatory considerations 
pertinent to patients with paediatric rheumatic diseases. Nevertheless, 
the same complex regulatory challenges faced by the initial CAR T cell 
products will need to be addressed in paediatric rheumatic diseases. 
Balancing safety and efficacy considerations in patients with paedi-
atric rheumatic diseases might differ from oncological indications, 
given that many patients with pSLE, JDM, jSSc and pAAV accrue organ 
damage and cumulative toxicity from standard-of-care immunosup-
pressive regimens over long periods of time, suggesting the need for 
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a lifelong perspective on the risk–benefit profile of CAR T cell therapy. 
Similarly, eligibility criteria must balance the need to enrol patients 
with paediatric-onset rheumatic diseases who have demonstrated 
some degree of refractoriness to standard-of-care therapies with the 
goal of administering CAR T cell therapy early enough in the disease 
course to mitigate disease activity, prevent damage and minimize 
cumulative toxicity from glucocorticoids and other traditional immu-
nosuppressants. Given the high unmet needs in paediatric rheumatic 
diseases, early inclusion of adolescent patients in clinical trials with 
subsequent expansion into younger age groups strongly deserves 
consideration. As small sample sizes are inherent in rare paediatric 
diseases, extrapolation of efficacy and safety data from adult autoim-
mune disease CAR T cell trials warrants consideration given established 
similarities, including toxicities, in adult reference and paediatric target 
populations198. Data from large, multicentre registries and observa-
tional cohort studies can support causal inference in open-label stud-
ies of CAR T cell therapy in which assignment to placebo or standard 
of care is untenable but comparison with historical controls derived 
from such registries would be desirable. Internationally harmonized 
guidance on paediatric extrapolation studies could have an important 
role in facilitating the advancement of this therapy given that these rare 
disease populations could require international recruitment to meet 
an informative sample size199. Finally, ongoing pharmacosurveillance 
and patient safety programmes (such as risk evaluation and mitigation 
strategy programmes) will be needed to continue the identification of 
rare or late toxicities whilst maximizing safety in real-world settings200.

Conclusions
Progress in immuno-oncology with potent and precise targeting of 
B cell malignancies with CAR T cells brings great hope to paediatric 
patients living with B cell-mediated rheumatic diseases. Thousands 
of paediatric patients with cancer have been treated with CAR T cells 
thus far, and the field is well positioned to safely and successfully 
bring this therapy to patients with paediatric rheumatic disease, who 
stand to reap major benefits from the prospect of durable drug-free 
remission. Given that paediatric patients arguably have the most 
to gain, we advocate for the inclusion of paediatric rheumatology 
patients in early-phase clinical trials. Although we are optimistic 
about the future of this field, formal evaluation is needed to deter-
mine which patients, and at what point in the disease course, will be 
best suited for this therapy. Differences in genetic predisposition 
and clinical phenotype between adults and children could influence 
the efficacy and durability of remission in children treated with CAR 
T cells, emphasizing the need for inclusion of genetic evaluations 
and robust correlative biology studies to understand predictors 
of safety and efficacy. The IMPACT working group brings together 
multidisciplinary experts to facilitate consensus on patient selection 
and trial design, education for patients and providers and advocacy 
for broad-based access to care. This collaborative approach will be 
fundamental to bringing this potentially life-changing therapy to 
patients with the greatest need.

Published online: 2 July 2025
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